fractional frequency
Recently Published Documents


TOTAL DOCUMENTS

464
(FIVE YEARS 64)

H-INDEX

30
(FIVE YEARS 2)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
M. Schioppo ◽  
J. Kronjäger ◽  
A. Silva ◽  
R. Ilieva ◽  
J. W. Paterson ◽  
...  

AbstractUltrastable lasers are essential tools in optical frequency metrology enabling unprecedented measurement precision that impacts on fields such as atomic timekeeping, tests of fundamental physics, and geodesy. To characterise an ultrastable laser it needs to be compared with a laser of similar performance, but a suitable system may not be available locally. Here, we report a comparison of two geographically separated lasers, over the longest ever reported metrological optical fibre link network, measuring 2220 km in length, at a state-of-the-art fractional-frequency instability of 7 × 10−17 for averaging times between 30 s and 200 s. The measurements also allow the short-term instability of the complete optical fibre link network to be directly observed without using a loop-back fibre. Based on the characterisation of the noise in the lasers and optical fibre link network over different timescales, we investigate the potential for disseminating ultrastable light to improve the performance of remote optical clocks.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Thayathip Thongtan ◽  
Sivinee Sawatdiaree ◽  
Chalermchon Satirapod

Abstract GNSS signals have been a practical time transfer tool to realise a Coordinated Universal Time (UTC) and set civilian clocks around the world with respect to this atomic time standard. UTC time scale is maintained by the International Bureau of Weights and Measurements (BIPM) adjusted to be close to a time scale based on the Earth’s rotation. In Thailand, the official atomic time clocks are maintained by the National Institute of Metrology Thailand (NIMT) to produce UTC(NIMT) and Thailand standard time which is always 7 hours ahead of UTC(NIMT) because of the time zone differences between Greenwich and Bangkok. National Positioning, Navigation and Timing (PNT) infrastructure comprises of GNSS geodetic receivers uniformly distributed to continually observe GNSS signals, mainly for geodetic survey applications both real-time and post-processing services. NIMT is involved in order to provide time link to UTC and to determine the characteristics of GNSS receiver internal clocks; namely, fractional frequency offset and frequency stabilities by applying the GNSS time transfer techniques of common-view algorithms. Monitored time differences with respect to UTC(NIMT) are achieved from selected 4 ground stations in different parts of the country with observations of 21 days in order to determine the frequency stability at 1-day and 7-day modes. GNSS standard log files; in RINEX format, at these receivers are transformed into a time transfer standard format; CGGTTS, used to compute the time differences between two stations, the fractional frequency offset and the frequency stability. Averaged fractional frequency offsets are 2.8 × 10 − 13 Hertz/Hertz 2.8\times {10^{-13}}\hspace{2.38387pt}\text{Hertz/Hertz} and computed Allan deviation is around 1.5 × 10 − 13 Hertz/Hertz 1.5\times {10^{-13}}\hspace{2.38387pt}\text{Hertz/Hertz} for an averaging time of 1 day. The comparison of the national time scale and receiver clock offsets of every receivers in this national GNSS PNT infrastructure could be accomplished through common-view time transfer using GNSS satellites to maintain the time link of geodetic active control points to UTC as well as to determine receiver internal clock characteristics.


2021 ◽  
Vol 9 (2) ◽  
pp. 313-325
Author(s):  
Rahat Ullah ◽  
Zubair Khalid ◽  
Fargham Sandhu ◽  
Imran Khan

The growing demands for mobile broadband application services along with the scarcity of the spectrum have triggered the dense utilization of frequency resources in cellular networks. The capacity demands are coped accordingly, however at the detriment of added inter-cell interference (ICI). Fractional Frequency Reuse (FFR) is an effective ICI mitigation approach when adopted in realistic irregular geometry cellular networks. However, in the literature optimized spectrum resources for the individual users are not considered. In this paper Hungarian Mechanism based Sectored Fractional Frequency Reuse (HMS-FFR) scheme is proposed, where the sub-carriers present in the dynamically partitioned spectrum are optimally allocated to each user. Simulation results revealed that the proposed HMS-FFR scheme enhances the system performance in terms of achievable throughput, average sum rate, and achievable throughput with respect to load while considering full traffic.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7899
Author(s):  
Iago Diógenes do Rego ◽  
Vicente A. de Sousa

This work explores interference coordination techniques (inter-cell interference coordination, ICIC) based on fractional frequency reuse (FFR) as a solution for a multi-cellular scenario with user concentration varying over time. Initially, we present the problem of high user concentration along with their consequences. Next, the use of multiple-input multiple-output (MIMO) and small cells are discussed as classic solutions to the problem, leading to the introduction of fractional frequency reuse and existing ICIC techniques that use FFR. An exploratory analysis is presented in order to demonstrate the effectiveness of ICIC techniques in reducing co-channel interference, as well as to compare different techniques. A statistical study was conducted using one of the techniques from the first analysis in order to identify which of its parameters are relevant to the system performance. Additionally, another study is presented to highlight the impact of high user concentration in the proposed scenario. Because of the dynamic aspect of the system, this work proposes a solution based on machine learning. It consists of changing the ICIC parameters automatically to maintain the best possible signal-to-interference-plus-noise ratio (SINR) in a scenario with hotspots appearing over time. All investigations are based on ns-3 simulator prototyping. The results show that the proposed Q-Learning algorithm increases the average SINR from all users and hotspot users when compared with a scenario without Q-Learning. The SINR from hotspot users is increased by 11.2% in the worst case scenario and by 180% in the best case.


2021 ◽  
Author(s):  
Faezeh Vedaei ◽  
Mahdi Alizadeh ◽  
Victor M Romo ◽  
Feroze B. Mohamed ◽  
Chengyuan Wu

Abstract Resting-state functional magnetic resonance imaging (rs-fMRI) has been known as a powerful tool in neuroscience. However, exploring the test-retest reliability of the metrics derived from rs-fMRI BOLD signal is essential particularly in the studies of patients with neurological development. Two factors affecting reliability of rs-fMRI measurements including the effect of anesthesia and scan length have been estimated in this study. A total of 9 patients with drug-resistant epilepsy (DRE) of requiring interstitial thermal therapy (LITT) were scanned in two states of awake and under anesthesia. At each state, two rs-fMRI sessions were obtained that each one lasted 15 minutes, and the effect of scan length was evaluated. Voxel-wise rs-fMRI metrics including amplitude of low fractional frequency fluctuation (ALFF), amplitude of low fractional frequency fluctuation (fALFF), functional connectivity (FC), and regional homogeneity (ReHo) were measured. Intraclass correlation coefficient (ICC) was calculated to estimate the reliability between two sessions of scanning for both states. Overall, our finding revealed that reliability improves under anesthesia as well as by increasing the scanning length of the scanning sessions. Furthermore, we showed that the optimal scan length to achieve reliable rs-fMRI measurements was 3.1 – 7.5 minutes shorter in an anesthetized, compared to wakeful state.


Sign in / Sign up

Export Citation Format

Share Document