Memory B Cell
Recently Published Documents


TOTAL DOCUMENTS

505
(FIVE YEARS 219)

H-INDEX

60
(FIVE YEARS 18)

2021 ◽  
Author(s):  
Raphael Reyes ◽  
Kathleen Clarke ◽  
S. Jake Gonzales ◽  
Angelene M. Cantwell ◽  
Rolando Garza ◽  
...  

SARS-CoV-2 infection elicits a robust B cell response, resulting in the generation of long-lived plasma cells and memory B cells. Here, we aimed to determine the effect of COVID-19 severity on the memory B cell response and characterize changes in the memory B cell compartment between recovery and five months post-symptom onset. Using high-parameter spectral flow cytometry, we analyzed the phenotype of memory B cells with reactivity against the SARS-CoV-2 spike protein or the spike receptor binding domain (RBD) in recovered individuals who had been hospitalized with non-severe (n=8) or severe (n=5) COVID-19. One month after symptom onset, a substantial proportion of spike-specific IgG+ B cells showed an activated phenotype. In individuals who experienced non-severe disease, spike-specific IgG+ B cells showed increased expression of markers associated with durable B cell memory, including T-bet, FcRL5, and CD11c, which was not observed after severe disease. Five months post-symptom onset, the majority of spike-specific memory B cells had a resting phenotype and the percentage of spike-specific T-bet+ IgG+ memory B cells decreased to baseline levels. Collectively, our results suggest that the memory B cell response elicited during non-severe COVID-19 may be of higher quality than the response after severe disease.


Author(s):  
Anuradha Rajamanickam ◽  
Nathella Pavan Kumar ◽  
Arul Nancy P ◽  
Nandhini Selvaraj ◽  
Saravanan Munisankar ◽  
...  

It is essential to examine the longevity of the defensive immune response engendered by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. We examined the SARS-CoV-2-specific antibody responses and ex vivo memory B-cell subsets in seven groups of individuals with COVID-19 classified based on days since reverse-transcription polymerase chain reaction confirmation of SARS-CoV-2 infection. Our data showed that the levels of IgG and neutralizing antibodies started increasing from days 15 to 30 to days 61 to 90, and plateaued thereafter. The frequencies of naive B cells and atypical memory B cells decreased from days 15 to 30 to days 61 to 90, and plateaued thereafter. In contrast, the frequencies of immature B cells, classical memory B cells, activated memory B cells, and plasma cells increased from days 15 to 30 to days 61 to 90, and plateaued thereafter. Patients with severe COVID-19 exhibited increased frequencies of naive cells, atypical memory B cells, and activated memory B cells, and lower frequencies of immature B cells, central memory B cells, and plasma cells when compared with patients with mild COVID-19. Therefore, our data suggest modifications in memory B-cell subset frequencies and persistence of humoral immunity in convalescent individuals with COVID-19.


2021 ◽  
Author(s):  
Gathsaurie Malavige ◽  
Chandima Jeewandara ◽  
Harsha Fernando ◽  
Pradeep Darshana Pushpakumara ◽  
Shyrar Tanussiya ◽  
...  

Abstract As the first dose of Gam-COVID-Vac, is currently used as a single dose vaccine in some countries, we investigated the immunogenicity of this at 4 weeks (327 naïve individuals). 88.7% seroconverted, with significantly lower seroconversion rates in those over 60 years (p = 0.004) and significantly lower than previously seen with AZD1222 (p = 0.018). 82.6% developed ACE2 receptor blocking antibodies, although levels were significantly lower than following natural infection (p = 0.0009) and a single dose of AZD1222 (p < 0.0001). Similar titres of antibodies were observed to the receptor binding domain of WT, B.1.1.7 and B.1.617.2 compared to AZD1222, while the levels for B.1.351 were significantly higher (p = 0.006) for Gam-COVID-Vac. 30% developed ex vivo IFNγ ELISpot responses (significantly lower than AZD1222), and high frequency of CD107a expressing T cells along with memory B cell responses. Although single dose of Gam-COVID-Vac was highly immunogenic, administration of a second dose is likely to be beneficial.


2021 ◽  
Vol 12 ◽  
Author(s):  
Otto Castro Nogueira ◽  
Mariana Gandini ◽  
Natasha Cabral ◽  
Vilma de Figueiredo ◽  
Rodrigo Nunes Rodrigues-da-Silva ◽  
...  

Despite being treatable, leprosy still represents a major public health problem, and many mechanisms that drive leprosy immunopathogenesis still need to be elucidated. B cells play important roles in immune defense, being classified in different subgroups that present distinct roles in the immune response. Here, the profile of B cell subpopulations in peripheral blood of patients with paucibacillary (TT/BT), multibacillary (LL/BL) and erythema nodosum leprosum was analyzed. B cell subpopulations (memory, transition, plasmablasts, and mature B cells) and levels of IgG were analyzed by flow cytometry and ELISA, respectively. It was observed that Mycobacterium leprae infection can alter the proportions of B cell subpopulations (increase of mature and decrease of memory B cells) in patients affected by leprosy. This modulation is associated with an increase in total IgG and the patient’s clinical condition. Circulating B cells may be acting in the modulation of the immune response in patients with various forms of leprosy, which may reflect the patient’s ability to respond to M. leprae.


2021 ◽  
Author(s):  
Ganesh Ram R. Visweswaran ◽  
Kamalakannan Vijayan ◽  
Ramyavardhanee Chandrasekaran ◽  
Olesya Trakhimets ◽  
Samantha L. Whiteside ◽  
...  

AbstractBlocking Plasmodium, the causative agent of malaria, at the asymptomatic pre-erythrocytic stage would abrogate disease pathology and prevent transmission. Rodent-infectious species of Plasmodium such as P. yoelii (Py) serve as key tools to study vaccine efficacy and disease biology in immune-competent experimental animals. Here we evaluated the differences in vaccine-elicited humoral immunity in two widely used, and vastly diverged, inbred mouse strains, BALB/cJ and C57BL/6J, and identified immunological factors associated with protection. We vaccinated with Py circumsporozoite protein (CSP), the major surface antigen on the sporozoite, and evaluated protective efficacy after mosquito bite challenge. Vaccination achieved 60% sterile protection and otherwise delayed blood stage patency in BALB/cJ mice, whereas; all C57BL/6J mice were infected similar to controls. Interestingly, protection was mediated by antibodies, and could be passively transferred from immunized BALB/cJ mice into naïve C57BL/6J. Dissection of the underlying immunological features of protection revealed early deficits in antibody titers and polyclonal avidity in C57BL/6J mice. Additionally, PyCSP-vaccination in BALB/cJ induced a significantly higher proportion of antigen-specific B-cells and class-switched memory B-cell (MBCs) populations than in C57BL/6J mice. Strikingly, C57BL/6J mice also had markedly fewer germinal center experienced, CSP-specific class-switched MBCs compared to BALB/cJ mice. Analysis of the IgG γ chain repertoires by next generation sequencing in PyCSP-specific memory B-cell repertoires also revealed higher somatic hypermutation rates in BALB/cJ mice than in C57BL/6J mice. These findings indicate that BALB/cJ mice achieved higher levels of B cell maturation in response to vaccination with PyCSP, which likely enabled the development of protective antibody responses. Overall, our study indicates that germinal center activity and B cell maturation are key processes in the development of vaccine-elicited protective antibodies against CSP.


Author(s):  
Liam Kealy ◽  
Kim L Good-Jacobson

Abstract Immunological memory has the potential to provide lifelong protection against recurrent infections. As such, it has been crucial to the success of vaccines. Yet, the recent pandemic has illuminated key gaps in our knowledge related to the factors influencing effective memory formation and the inability to predict the longevity of immune protection. In recent decades, researchers have acquired a number of novel and powerful tools with which to study the factors underpinning humoral memory. These tools have been used to study the B-cell fate decisions that occur within the germinal centre, a site where responding B-cells undergo affinity maturation and is one of the major routes for memory B-cell and high-affinity long-lived plasma cell formation. The advent of single-cell sequencing technology has provided an enhanced resolution for studying fate decisions within the germinal centre and cutting-edge techniques have enabled researchers to model this reaction with more accuracy both in vitro and in silico. Moreover, modern approaches to studying memory B-cells have allowed us to gain a better appreciation for the heterogeneity and adaptability of this vital class of B-cells. Together, these studies have facilitated important breakthroughs in our understanding of how these systems operate to ensure a successful immune response. In this review, we describe recent advances in the field of germinal centre and memory B-cell biology in order to provide insight into how humoral memory is formed, as well as the potential for generating lasting immunity to novel pathogens such as SARS-CoV-2.


2021 ◽  
Author(s):  
Yuezhou Chen ◽  
Pei Tong ◽  
Noah B. Whiteman ◽  
Ali Sanjari Moghaddam ◽  
Adam Zuiani ◽  
...  

ABSTRACTOptimal immune responses furnish long-lasting (durable) antibodies protective across dynamically mutating viral variants (broad). To assess robustness of mRNA vaccine-induced immunity, we compared antibody durability and breadth after SARS-CoV-2 infection and vaccination. While vaccination delivered robust initial virus-specific antibodies with some cross-variant coverage, pre-variant SARS-CoV-2 infection-induced antibodies, while modest in magnitude, showed highly stable long-term antibody dynamics. Vaccination after infection induced maximal antibody magnitudes with enhanced longitudinal stability while infection-naïve vaccinee antibodies fell with time to post-infection-alone levels. The composition of antibody neutralizing activity to variant relative to original virus also differed between groups, with infection-induced antibodies demonstrating greater relative breadth. Differential antibody durability trajectories favored COVID-19-recovered subjects with dual memory B cell features of greater early antibody somatic mutation and cross-coronavirus reactivity. By illuminating an infection-mediated antibody breadth advantage and an anti-SARS-CoV-2 antibody durability-enhancing function conferred by recalled immunity, these findings may serve as guides for ongoing vaccine strategy improvement.


2021 ◽  
Author(s):  
Kang Wang ◽  
Yunlong Richard Cao ◽  
Yunjiao Zhou ◽  
Jiajing Wu ◽  
Zijing Jia ◽  
...  

Emergence of variants of concern (VOC) with altered antigenic structures and waning humoral immunity to SARS-CoV-2 are harbingers of a long pandemic. Administration of a third dose of an inactivated virus vaccine can boost the immune response. Here, we have dissected the immunogenic profiles of antibodies from 3-dose vaccinees, 2-dose vaccinees and convalescents. Better neutralization breadth to VOCs, expeditious recall and long-lasting humoral response bolster 3-dose vaccinees in warding off COVID-19. Analysis of 171 complex structures of SARS-CoV-2 neutralizing antibodies identified structure-activity correlates, revealing ultrapotent, VOCs-refractory and broad-spectrum antigenic patches. Construction of immunogenic and mutational heat maps revealed a direct relationship between "hot" immunogenic sites and areas with high mutation frequencies. Ongoing antibody somatic mutation, memory B cell clonal turnover and antibody composition changes in B cell repertoire driven by prolonged and repeated antigen stimulation confer development of monoclonal antibodies with enhanced neutralizing potency and breadth. Our findings rationalize the use of 3-dose immunization regimens for inactivated vaccines.


2021 ◽  
pp. 110905
Author(s):  
Stephen Lindsly ◽  
Maya Gupta ◽  
Cooper Stansbury ◽  
Indika Rajapakse
Keyword(s):  
B Cell ◽  

2021 ◽  
Author(s):  
Makda Gebre ◽  
Susanne Rauch ◽  
Nicole Roth ◽  
Jingyou Yu ◽  
Abishek Chandrashekar ◽  
...  

The CVnCoV (CureVac) mRNA vaccine for SARS-CoV-2 has recently been evaluated in a phase 2b/3 efficacy trial in humans. CV2CoV is a second-generation mRNA vaccine with optimized non-coding regions and enhanced antigen expression. Here we report a head-to-head study of the immunogenicity and protective efficacy of CVnCoV and CV2CoV in nonhuman primates. We immunized 18 cynomolgus macaques with two doses of 12 ug of lipid nanoparticle formulated CVnCoV, CV2CoV, or sham (N=6/group). CV2CoV induced substantially higher binding and neutralizing antibodies, memory B cell responses, and T cell responses as compared with CVnCoV. CV2CoV also induced more potent neutralizing antibody responses against SARS-CoV-2 variants, including B.1.351 (beta), B.1.617.2 (delta), and C.37 (lambda). While CVnCoV provided partial protection against SARS-CoV-2 challenge, CV2CoV afforded robust protection with markedly lower viral loads in the upper and lower respiratory tract. Antibody responses correlated with protective efficacy. These data demonstrate that optimization of non-coding regions can greatly improve the immunogenicity and protective efficacy of an mRNA SARS-CoV-2 vaccine in nonhuman primates.


Sign in / Sign up

Export Citation Format

Share Document