orthopaedic implants
Recently Published Documents


TOTAL DOCUMENTS

439
(FIVE YEARS 59)

H-INDEX

46
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Justas Zalieckas ◽  
Ivan Rios Mondragon ◽  
Paulius Pobedinskas ◽  
Arne Skodvin Kristoffersen ◽  
Samih Mohamed-Ahmed ◽  
...  

Polycrystalline diamond has the potential to improve the osseointegration of orthopaedic implants compared to conventional osteo-implant materials such as titanium. However, despite the excellent biocompatibility and superior mechanical properties, the major challenge of using diamond for implants such as those used for hip arthroplasty is the limitations of microwave plasma chemical vapor deposition (CVD) techniques to synthesize diamond on complex-shaped objects. Here, for the first time we demonstrate diamond growth on titanium acetabular shells using surface wave plasma CVD method. Polycrystalline diamond coatings were synthesized at low temperatures (~400 °C) on three types of acetabular shells with different surface structure and porosity. We achieved diamond growth on highly porous surfaces designed to mimic the structure of the trabecular bone and improve osseointegration. Biocompatibility was investigated on nanocrystalline diamond (NCD) and ultrananocrystalline diamond (UNCD) coatings terminated either with hydrogen or oxygen. To understand the role of diamond surface topology and chemistry in attachment and proliferation of mammalian cells we investigated adsorption of extracellular matrix (ECM) proteins, and monitored metabolic activity of fibroblasts, osteoblasts, and bone marrow-derived mesenchymal stem cells (MSCs). The interaction of bovine serum albumin (BSA) and Type I collagen with diamond surface was investigated by confocal fluorescence lifetime imaging microscopy (FLIM). We found that proliferation of MSCs was better on hydrogen terminated UNCD than on oxygen terminated counterpart. These findings corelate to the behaviour of collagen on diamond substrates observed by FLIM. Hydrogen terminated UNCD provides better adhesion and proliferation for MSCs, compared to titanium, while growth of fibroblasts is poorest on hydrogen terminated NCD and osteoblasts behave similarly on all tested surfaces. These results open new opportunities for application of diamond coatings on orthopaedic implants.


2021 ◽  
Vol 17 (5) ◽  
pp. 504-513
Author(s):  
Norhasiza Mat Jusoh ◽  
Arif Faddilah Mohd Noor ◽  
Suffian Mohamad Tajudin ◽  
Mohd Hadizie Din ◽  
Mohd Ezane Aziz ◽  
...  

Stainless steel and titanium alloys are common materials for orthopaedic implants. However there is a lack of information and studies on magnetic remanence of  implants used in clinical practice. The aims of this study are to investigate the composition and the presence of magnetic remanence for these two orthopaedic implant materials. These two factors may cause implant instability and heat problems as well as degradation of the images quality if the patients undergo magnetic resonance imaging (MRI) examination. The magnetic hysteresis loop and remanence status of stainless steel and titanium alloy orthopaedic implants were investigated with a vibrating sample magnetometer (VSM). Both samples of stainless steel and titanium alloy had been exposed to external magnetic fields up to 1 T (10000 G) and 1.4 T (14000 G), respectively. The compositions of these two orthopaedic implant materials were studied using a scanning electron microscope with energy dispersive X-ray analysis (SEM-EDX). The results of the study demonstrated that ferrous and nickel compositions in stainless steel alloy orthopaedic implants contributed to the residual magnetism, as shown in the hysteresis loop. The titanium alloy orthopaedic implant sample does not contain any ferromagnetic elements. After exposure to a magnetic field, the stainless steel values of retentivity, coercivity and magnetisation are significantly higher compared to those of the titanium alloy. The stainless steel orthopaedic implant sample demonstrates a typical hysteresis loop that suggests the existence of magnetic remanence. In contrast, the titanium alloy orthopaedic implant sample showed no significant remanence phenomenon. By considering the existence of magnetic remanence in the implant is important as potential effect on the MRI image quality.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kashif Ishfaq ◽  
Mudassar Rehman ◽  
Ahmed Raza Khan ◽  
Yanen Wang

Purpose Human aging is becoming a common issue these days as it results in orthopaedic-related issues such as joints disorderness, bone-fracture. People with age = 60 years suffer more from these aforesaid issues. It is expected that these issues in human beings will ultimately reach 2.1 billion by 2050 worldwide. Furthermore, the increase in traffic accidents in young people throughout the world has significantly emerged the need for artificial implants. Their implantation can act as a substitute for fractured bones or disordered joints. Therefore, this study aims to focus on electron beam melted titanium (Ti)-based orthopaedic implants along with their recent trends in the field. Design/methodology/approach The main contents of this work include the basic theme and background of the metal-based additive manufacturing, different implant materials specifically Ti alloys and their classification based on crystallographic transus temperature (including α, metastable β, β and α + β phases), details of electron beam melting (EBM) concerning its process physics, various control variables and performance characteristics of EBMed Ti alloys in orthopaedic and orthodontic implants, applications of EBMed Ti alloys in various load-bearing implants, different challenges associated with the EBMed Ti-based implants along with their possible solutions. Recent trends and shortfalls have also been described at the end. Findings EBM is getting significant attention in medical implants because of its minor issues as compared to conventional fabrication practices such as Ti casting and possesses a significant research potential to fabricate various medical implants. The elastic modulus and strength of EBMed ß Ti-alloys such as 24Nb-4Zr-8Sn and Ti-33Nb-4Sn are superior compared to conventional Ti for orthopaedic implants. Beta Ti alloys processed by EBM have near bone elastic modulus (approximately 35–50 GPa) along with improved tribo-mechanical performance involving mechanical strength, wear and corrosion resistance, along with biocompatibility for implants. Originality/value Advances in EBM have opened the gateway Ti alloys in the biomedical field explicitly ß-alloys because of their unique biocompatibility, bioactivity along with improved tribo-mechanical performance. Less significant work is available on the EBM of Ti alloys in orthopaedic and orthodontic implants. This study is directed solely on the EBM of medical Ti alloys in medical sectors to explore their different aspects for future research opportunities.


2021 ◽  
Vol 108 (Supplement_6) ◽  
Author(s):  
M Adewusi ◽  
K Roy ◽  
Y Joshi

Abstract Background Stenotrophomas maltophilia (SM) is a ubiquitous opportunistic gram-negative bacillus known to cause hospital acquired infections, commonly in immunosuppressed individuals. However, occurrence of this microorganism is rarely reported in the musculoskeletal system. We report a case of a young healthy man with recurrent knee swelling caused by SM. This organism has been reported to form biofilms over orthopaedic implants, with increased resistance to antibiotic therapy, making it difficult to eradicate once established. Case Report A 34-year-old man with psoriasis and asthma presented with right knee swelling and pain, and no history of preceding trauma or fever. He has a past surgical history of anterior cruciate ligament tear and underwent reconstruction with an endobutton two years prior, and a lateral meniscal repair treated in the previous year. At presentation, he was apyrexial and was noted to have a moderate right knee effusion. Initial radiographic imaging identified a large joint effusion with no obvious evidence of bone destruction, laboratory studies also showed a raised white cell count of 11.4 *10^9/L, C-reactive protein of 54mg/L and aspiration cultures were negative. He subsequently underwent numerous washouts, and removal of endobutton with open synovial biopsy which showed SM. The organism was sensitive to cotrimoxazole. The patient had appropriate antibiotics with resolution of symptoms, however he still presented with recurrence. Conclusions The persistence of SM despite intervention makes it difficult to treat. Although a rare organism, surgeons should consider it as a differential in recurring knee effusion with orthopaedic implants, and institute early and appropriate management for best outcomes.


Sign in / Sign up

Export Citation Format

Share Document