impact ionization rate
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 4)

H-INDEX

14
(FIVE YEARS 1)

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 457
Author(s):  
Zhaoxiang Wei ◽  
Hao Fu ◽  
Xiaowen Yan ◽  
Sheng Li ◽  
Long Zhang ◽  
...  

The variations in the degradation of electrical characteristics resulting from different device structures for trench-gate SiC metal-oxide-semiconductor field effect transistors (MOSFETs) are investigated in this work. Two types of the most advanced commercial trench products, which are the asymmetric trench SiC MOSFET and the double-trench SiC MOSFET, are chosen as the targeted devices. The discrepant degradation trends caused by the repetitive avalanche stress are monitored. For the double-trench device, the conduction characteristic improves while the gate-drain capacitance (Cgd) increases seriously. It is because positive charges are injected into the bottom gate oxide during the avalanche process, which are driven by the high oxide electronic field (Eox) and the high impact ionization rate (I.I.) there. Meanwhile, for the asymmetric trench SiC MOSFET, the I–V curve under the high gate bias condition and the Cgd remain relatively stable, while the trench bottom is well protected by the deep P+ well. However, it’s threshold voltage (Vth) decreases more obviously when compared with that of the double-trench device and the inclined channel suffers from more serious stress than the vertical channel. Positive charges are more easily injected into the inclined channel. The phenomena and the corresponding mechanisms are analyzed and proved by experiments and technology computer-aided design (TCAD) simulations.


2020 ◽  
Vol 1004 ◽  
pp. 998-1003
Author(s):  
Jia Xing Wei ◽  
Si Yang Liu ◽  
Sheng Li ◽  
Li Zhi Tang ◽  
Rong Cheng Lou ◽  
...  

The unexpected resistance reduction effect of double-trench SiC MOSFETs under repetitive avalanche stress is investigated in this work. After enduring repetitive avalanche stress, the ON-state drain-source resistance (Rdson) of the device decreases. With the help of TCAD simulations, the dominant mechanism is proved to be the injection of positive charges into the gate trench bottom oxide, which is almost irreversible under zero-voltage bias condition at room temperature. For the injected positive charges attract extra electrons just beneath the gate trench bottom, where the carriers pass through under ON state, the resistivity there is reduced, improving the conduction capability of the device. Moreover, an optimization method is proposed. Since the impact ionization rate (I.I.) and the vertical oxide electric field (E⊥) along the gate trench bottom oxide interface contribute to the injection of positive charges, it is recommended to make the bottom oxide thicker to suppress this effect.


Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 514 ◽  
Author(s):  
Feng-Tso Chien ◽  
Kuang-Po Hsueh ◽  
Zhen-Jie Hong ◽  
Kuan-Ting Lin ◽  
Yao-Tsung Tsai ◽  
...  

In this study, a novel low impact ionization rate (low-IIR) poly-Si thin film transistor featuring a current and electric field split (CES) structure with bottom field plate (BFP) and partial thicker channel raised source/drain (RSD) designs is proposed and demonstrated. The bottom field plate design can allure the electron and alter the electron current path to evade the high electric field area and therefore reduce the device IIR and suppress the kink effect. A two-dimensional device simulator was applied to describe and compare the current path, electric field magnitude distributions, and IIR of the proposed structure and conventional devices. In addition, the advantages of a partial thicker channel RSD design are present, and the leakage current of CES-thin-film transistor (TFT) can be reduced and the ON/OFF current ratio be improved, owing to a smaller drain electric field.


JETP Letters ◽  
2017 ◽  
Vol 105 (9) ◽  
pp. 586-590
Author(s):  
A. N. Afanasiev ◽  
A. A. Greshnov ◽  
G. G. Zegrya

Author(s):  
Abebe T. Tarekegne ◽  
Krzysztof Iwaszczuk ◽  
Hideki Hirori ◽  
Koichiro Tanaka ◽  
Peter U. Jepsen

Sign in / Sign up

Export Citation Format

Share Document