glycan analysis
Recently Published Documents


TOTAL DOCUMENTS

165
(FIVE YEARS 34)

H-INDEX

33
(FIVE YEARS 3)

Author(s):  
Sumit K. Singh ◽  
Kelvin H. Lee

Glycosylation is a critical quality attribute of monoclonal antibody (mAb) therapeutics. Hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS) is an invaluable technology for the characterization of protein glycosylation. HILIC/MS-based glycan analysis relies on the library search using Glucose Units (GU) and accurate mass (AM) as the primary search parameters for identification. However, GU-based identifications are gradient-dependent and are not suitable for applications where separation gradients need to be optimized to analyze complex samples or achieve higher throughput. Additionally, the workflow requires calibration curves (using dextran ladder) to be generated for each analysis campaign, which in turn, are used to derive the GU values of the separated glycan species. To overcome this limitation, we employed a two-step strategy for targeted glycan analysis of a mAb expressed in Chinese Hamster Ovary (CHO) cells. The first step is to create a custom library of the glycans of interest independent of GU values (thereby eliminating the need for a calibration curve) and instead uses AM and retention time (RT) as the primary search variables. The second step is to perform targeted glycan screening using the custom-built library. The developed workflow was applied for targeted glycan analysis of a mAb expressed in CHO for 1) cell line selection 2) characterizing the day-wise glycan evolution in a model mAb during a fed-batch culture, 3) assessing the impact of different media conditions on glycosylation, and 4) evaluating the impact of two different process conditions on glycosylation changes in a model mAb grown in a bioreactor. Taken together, the data presented in this study provides insights into the sources of glycan heterogeneity in a model mAb that are seen during its commercial manufacturing.


Glycobiology ◽  
2021 ◽  
Author(s):  
Irene Friligou ◽  
Jana Gassner ◽  
Dominic Knoblauch ◽  
Gabriele Kagerer ◽  
Franziska Popp ◽  
...  

Abstract Recombinant immunoglobulins (rIgGs) have become increasingly important as therapeutic agents and diagnostic tools in recent years. Genetic engineering allows the introduction of non-natural features such as the Sortase motif for site-directed labeling. In this study, the enzyme Sortase A (SrtA) was used for the proteolytic cleavage of rIgGs to produce their biotinylated Fab fragments by locating the cleavage site close to the hinge region. However, SrtA cleavage of engineered rabbit IgGs (rRb-IgGs) derived from human embryonic kidney (HEK) 293 cells showed significantly lower yields compared with their mouse counterparts. Non-recombinant Rb-IgGs have N- and O-glycans, and the presence of O-glycans close to the hinge region of the rRb-IgGs might affect the susceptibility of these antibodies to SrtA cleavage. In addition, the glycosylation pattern of rIgGs differs depending on the host cell used for expression. Therefore, we analyzed the N- and O-glycans of various rRb-IgGs expressed in HEK293 cells, detecting and quantifying 13 different N-glycan and 3 different O-glycan structures. The distribution of the different detected glycoforms in our rRb-IgG N-glycan analysis is in agreement with previous studies on recombinant human IgG N-glycans, confirming the hypothesis that the host cell defines the glycosylation of the recombinant produced IgGs. O-glycosylation could be mapped onto the threonine residue within the hinge region sequence XPTCPPPX, as already described previously for non-recombinant Rb-IgGs. Substitution of this threonine allowed an almost complete Fab fragment cleavage. Therefore, we could confirm the hypothesis that the O-glycans affect the SrtA activity, probably due to steric hindrance.


Sign in / Sign up

Export Citation Format

Share Document