particle confinement
Recently Published Documents


TOTAL DOCUMENTS

201
(FIVE YEARS 27)

H-INDEX

24
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Thierry Kremeyer ◽  
Ralf König ◽  
Sebastijan Brezinsek ◽  
Oliver Schmitz ◽  
Yuhe Feng ◽  
...  

Abstract A single-reservoir particle balance for the main plasma species hydrogen has been established for Wendelstein 7-X (W7-X). This has enabled the quantitative characterization of the particle sources in the standard island divertor configuration for the first time. Findings from attached scenarios with two different island sizes with a boronized wall and turbo molecular pumping are presented. Fueling efficiencies, particle flows and source locations were measured and used to infer the total particle confinement time $\tau_{\rm{p}}$. Perturbative gas injection experiments served to measure the effective particle confinement time $\tau_{\rm{p}}^*$. Combining both confinement times provides access to the global recycling coefficient $\bar{R}$. Hydrogen particle inventories have been addressed and the knowledge of particle sources and sinks reveals the core fueling distribution and provides insight into the capability of the magnetic islands to control exhaust features. Measurements of hydrogen fueling efficiencies were sensitive to the precise fueling location and measured between 12~\% and 31~\% with the recycling fueling at the strike line modeled at only 6~\%, due to much higher densities. 15~\% of the total \SI{5.2E+22}{a/s} recycling flow ionizes far away from the recycling surfaces in the main chamber. It was shown that 60~\% of recycled particles ionize above the horizontal and 18~\% above the vertical divertor target, while the remainder of the recycling flow ionizes above the baffle (7~\%). Combining these source terms with their individual fueling efficiencies resolves the core fueling distribution. Due to the higher fueling efficiency in the main chamber, up to 51~\% of the total \SI{5.1E+21}{1/s} core fueling particles are entering the confined plasma from the main chamber. $\tau_{\rm{p}}$ values in the range of 260 ms were extracted for these discharges. Together with $\tau_{\rm{p}}$, the global recycling coefficient $\bar{R}$ was resolved for every $\tau_{\rm{p}}^*$ measurement and a typical value close to unity was obtained. An increase of the island size, resulted in no change of $\tau_{\rm{p}}$, but doubled $\tau_{\rm{p}}^*$, indicating the feasibility of the control coils as an actuator to control exhaust features without affecting core confinement properties.


Author(s):  
Wei Li ◽  
Yuhong Xu ◽  
Jun Cheng ◽  
Hai Liu ◽  
Zhipeng Chen ◽  
...  

Abstract Effects of edge radial electric field Er and Er × B flow shear on edge turbulence and turbulent transport, in particular, on large-scale blobs and blobby transport have been investigated in the positive and negative biasing discharges in the J-TEXT tokamak. The results show that under certain conditions, the positive electrode biasing induces better plasma confinement than the negative biasing. Further studies reveal that in addition to flow shear effects on blob dynamics, the local radial electric field at the edge region plays a significant role in repulsion of the blobs and associated transport, leading to improvement of particle confinement when the outward motion of the blobs is blocked. The results are in accordance with theoretical predictions.


Author(s):  
Weisheng Lin ◽  
Xiaogang Wang ◽  
Xueqiao Xu ◽  
Defeng Kong ◽  
Yumin Wang ◽  
...  

Abstract Tritium self-sufficiency in future DT fusion reactor is a crucial challenge. As an engineering test reactor, CFETR requires a burning fraction of 3% for the goal to test the accessibility to the future fusion plant. To self-consistently simulate burning plasmas with profile changes in pellet injection scenarios and to estimate the corresponding burning fraction, a one-dimensional (1-D) multi-species radial transport model is developed in BOUT++ frame. Several pellet-fueling scenarios are then tested in the model. Results show that the increased fueling depth improves the burning fraction by particle confinement improvement and fusion power increase. Nevertheless, by increasing the depth, the pellet cooling-down may significantly lower the temperature in the core region. Taking the density perturbation into consideration, the reasonable parameters of the fueling scenario in these simulations are estimated as the pellet radius r_p=3 mm, the injection rate = 4 Hz , the pellet injection velocity =1000–2000 m/s without drift or 450 m/s with high filed side (HFS) drift.


2021 ◽  
Author(s):  
Frederick Law ◽  
Antoine J Cerfon ◽  
Benjamin Peherstorfer

Abstract In the design of stellarators, energetic particle confinement is a critical point of concern which remains challenging to study from a numerical point of view. Standard Monte Carlo analyses are highly expensive because a large number of particle trajectories need to be integrated over long time scales, and small time steps must be taken to accurately capture the features of the wide variety of trajectories. Even when they are based on guiding center trajectories, as opposed to full-orbit trajectories, these standard Monte Carlo studies are too expensive to be included in most stellarator optimization codes. We present the first multifidelity Monte Carlo scheme for accelerating the estimation of energetic particle confinement in stellarators. Our approach relies on a two-level hierarchy, in which a guiding center model serves as the high-fidelity model, and a data-driven linear interpolant is leveraged as the low-fidelity surrogate model. We apply multifidelity Monte Carlo to the study of energetic particle confinement in a 4-period quasi-helically symmetric stellarator, assessing various metrics of confinement. Stemming from the very high computational efficiency of our surrogate model as well as its sufficient correlation to the high-fidelity model, we obtain speedups of up to 10 with multifidelity Monte Carlo compared to standard Monte Carlo.


Author(s):  
David Kulla ◽  
Samuel A Lazerson ◽  
Sibylle Günter ◽  
Matthias Hirsch ◽  
Dirk Hartmann ◽  
...  

Abstract In light of measuring the fast ionized particle confinement in the stellarator Wendelstein 7-X, particles generated by the neutral beam injection system are simulated to determine the placement of an array of faraday-cup fast ion loss detectors. This array is important due to the localization of the loss pattern, which changes drastically with experimental parameters. The Monte Carlo codes BEAMS3D and ASCOT5 are used for the simulations, following the particles from injection to wall collision. Different magnetic configurations and plasma pressures are investigated in this manner, and a configuration suitable for measuring the loss fraction is found. It qualitatively reproduces the global losses, is installable in locations of current carbon wall-tiles and the individual detector output appears well-suited for experimental purposes.


2021 ◽  
Author(s):  
Oliver Vanderpoorten ◽  
Ali Nawaz Babar ◽  
Georg Krainer ◽  
Raphael P.B. Jacquat ◽  
Pavan K. Challa ◽  
...  

The analysis of nanoscopic species, such as proteins and colloidal assemblies, at the single-molecule level has become vital in many areas of fundamental and applied research. Approaches to increase the detection timescales for single molecules in solution without immobilising them onto a substrate surface and applying external fields are much sought after. Here we present an easy-to-implement and versatile nanofluidics-based approach that enables increased observational-timescale analysis of single biomacromolecules and nanoscale colloids in solution. We use two-photon-based hybrid lithography in conjunction with soft lithography to fabricate nanofluidic devices with nano-trapping geometries down to 100 nm in height. We provide a rigorous description and characterisation of the fabrication route that enables the writing of nanoscopic 3D structures directly in photoresist and allows for the integration of nano-trapping and nano-channel geometries within micro-channel devices. Using confocal fluorescence burst detection, we validated the functionality of particle confinement in our nano-trap geometries through measurement of particle residence times. All species under study, including nanoscale colloids, α-synuclein oligomers, and double-stranded DNA, showed a three to five-fold increase in average residence time in the detection volume of nano-traps, due to the additional local steric confinement, in comparison to free space diffusion in a nearby micro-channel. Our approach thus opens-up the possibility for single-molecule studies at prolonged observational timescales to analyse and detect nanoparticles and protein assemblies in solution without the need for surface immobilisation.


ACS Nano ◽  
2021 ◽  
Author(s):  
Long Chen ◽  
Ashwin Panday ◽  
Jonggab Park ◽  
Mingyu Kim ◽  
Dong Kyo Oh ◽  
...  
Keyword(s):  

2021 ◽  
pp. 2002238
Author(s):  
Sajjad Husain Mir ◽  
Brian D. Jennings ◽  
Goekalp Engin Akinoglu ◽  
Andrew Selkirk ◽  
Riley Gatensby ◽  
...  

2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Elizabeth A. Tolman ◽  
Peter J. Catto

Upcoming tokamak experiments fuelled with deuterium and tritium are expected to have large alpha particle populations. Such experiments motivate new attention to the theory of alpha particle confinement and transport. A key topic is the interaction of alpha particles with perturbations to the tokamak fields, including those from ripple and magnetohydrodynamic modes like Alfvén eigenmodes. These perturbations can transport alphas, leading to changed localization of alpha heating, loss of alpha power and damage to device walls. Alpha interaction with these perturbations is often studied with single-particle theory. In contrast, we derive a drift kinetic theory to calculate the alpha heat flux resulting from arbitrary perturbation frequency and periodicity (provided these can be studied drift kinetically). Novel features of the theory include the retention of a large effective collision frequency resulting from the resonant alpha collisional boundary layer, correlated interactions over many poloidal transits and finite orbit effects. Heat fluxes are considered for the example cases of ripple and the toroidal Alfvén eigenmode (TAE). The ripple heat flux is small. The TAE heat flux is significant and scales with the square of the perturbation amplitude, allowing the derivation of constraints on mode amplitude for avoidance of significant alpha depletion. A simple saturation condition suggests that TAEs in one upcoming experiment will not cause significant alpha transport via the mechanisms in this theory. However, saturation above the level suggested by the simple condition, but within numerical and experimental experience, which could be accompanied by the onset of stochasticity, could cause significant transport.


Sign in / Sign up

Export Citation Format

Share Document