postharvest decay
Recently Published Documents


TOTAL DOCUMENTS

288
(FIVE YEARS 57)

H-INDEX

39
(FIVE YEARS 4)

2022 ◽  
Vol 185 ◽  
pp. 111805
Author(s):  
Laura Settier-Ramírez ◽  
Gracia López-Carballo ◽  
Pilar Hernández-Muñoz ◽  
Angélique Fontana-Tachon ◽  
Caroline Strub ◽  
...  

2022 ◽  
Vol 12 ◽  
Author(s):  
Hongbo Yuan ◽  
Bingke Shi ◽  
Li Wang ◽  
Tianxiang Huang ◽  
Zengqiang Zhou ◽  
...  

Botryosphaeria dothidea causes apple ring rot, which is among the most prevalent postharvest diseases of apples and causes significant economic loss during storage. In this study, we investigated the biocontrol activity and possible mechanism of Bacillus velezensis strain P2-1 isolated from apple branches against B. dothidea in postharvest apple fruit. The results showed strain P2-1, one of the 80 different endophytic bacterial strains from apple branches, exhibited strong inhibitory effects against B. dothidea growth and resulted in hyphal deformity. B. velezensis P2-1 treatment significantly reduced the ring rot caused by B. dothidea. Additionally, the supernatant of strain P2-1 exhibited antifungal activity against B. dothidea. Re-isolation assay indicated the capability of strain P2-1 to colonize and survive in apple fruit. PCR and qRT-PCR assays revealed that strain P2-1 harbored the gene clusters required for biosynthesis of antifungal lipopeptides and polyketides. Strain P2-1 treatment significantly enhanced the expression levels of pathogenesis-related genes (MdPR1 and MdPR5) but did not significantly affect apple fruit qualities (measured in fruit firmness, titratable acid, ascorbic acid, and soluble sugar). Thus, our results suggest that B. velezensis strain P2-1 is a biocontrol agent against B. dothidea-induced apple postharvest decay. It acts partially by inhibiting mycelial growth of B. dothidea, secreting antifungal substances, and inducing apple defense responses.


2021 ◽  
Vol 7 (12) ◽  
pp. 1019
Author(s):  
Aleksandra Žebeljan ◽  
Nataša Duduk ◽  
Nina Vučković ◽  
Wayne M. Jurick ◽  
Ivana Vico

Blue mold, caused by Penicillium spp., is one of the most economically important postharvest diseases of pome fruits, globally. Pome fruits, in particular apple, is the most widely grown pome fruit in Serbia, and the distribution of Penicillium spp. responsible for postharvest decay is unknown. A two-year survey was conducted in 2014 and 2015, where four pome fruits (apple, pear, quince, and medlar) with blue mold symptoms were collected from 20 storage locations throughout Serbia. Detailed morphological characterization, analysis of virulence in three apple cultivars, and multilocus phylogeny revealed three main Penicillium spp. in order of abundance: P. expansum, P. crustosum, and P. solitum. Interestingly, P. expansum split into two distinct clades with strong statistical support that coincided with several morphological observations. Findings from this study are significant and showed previously undocumented diversity in blue mold fungi responsible for postharvest decay including the first finding of P. crustosum, and P. solitum as postharvest pathogens of quince and P. crustosum of medlar fruit in the world, and P. expansum of quince in Serbia. Data from this study provide timely information regarding phenotypic, morphological and genotypic plasticity in P. expansum that will impact the design of species-specific detection tools and guide the development of blue mold management strategies.


2021 ◽  
Author(s):  
Wenxiao Jiao ◽  
Xin Liu ◽  
Youyuan Li ◽  
Boqiang Li ◽  
Yamin Du ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Qiang Huang ◽  
Chunpeng Wan ◽  
Yajie Zhang ◽  
Chuying Chen ◽  
Jinyin Chen

The storability recession during storage limits the postharvest storage life of Ponkan (Citrus reticulata Blanco cv. Ponkan) fruit and its nutritional value, which potentially lead to huge losses. To develop an effective technique to reduce Ponkan fruit postharvest decay and to maintain the nutritional quality, the preservation effect of 9, 12, and 15% postharvest gum arabic (GA) coatings on Ponkan fruit was investigated. The 12 and 15% GA coatings effectively reduced fruit decay as well as weight loss, retained higher total soluble solids (TSS) content, suppressed titratable acidity (TA) degradation, and postponed the rise in ripening index (RI). Moreover, the 12% GA-coated fruit exhibited a lower respiration rate, electrical conductivity, and malondialdehyde (MDA) accumulation than the uncoated (control) fruit. The 12% GA coating treatment decreased the loss of ascorbic acid (AsA), total phenols, and total flavonoids and maintained higher amounts of non-enzymatic antioxidants. Furthermore, the 12% GA coating treatment increased antioxidant enzymes' activities as well as delayed the reduction of total antioxidant capacity (TAC). These results suggest that, with the cold storage increasing time, the 12% GA-coated fruit exhibited better postharvest storability and higher nutritional quality than the control fruit. The GA coating treatment could be used as a commercial wax to improve postharvest storability, extend its storage life, and maintain the nutritional value of Ponkan fruit up to 120 days of cold storage.


2021 ◽  
Author(s):  
Nikita Stasenko ◽  
Maxim Savinov ◽  
Valeriy Burlutskiy ◽  
Maria Pukalchik ◽  
Andrey Somov

2021 ◽  
pp. 109-118
Author(s):  
K. Payuhamaytakul ◽  
K. Sripong ◽  
A. Uthairatanakij ◽  
P. Renumarn ◽  
P. Jitareerat

Sign in / Sign up

Export Citation Format

Share Document