aquatic sediments
Recently Published Documents


TOTAL DOCUMENTS

322
(FIVE YEARS 28)

H-INDEX

53
(FIVE YEARS 2)

Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 7
Author(s):  
Chee Kong Yap ◽  
Khalid Awadh Al-Mutairi

The ASEAN-5 countries (Malaysia, Indonesia, Thailand, Philippines, and Vietnam) of the Association of Southeast Asian Nations as a group is an ever-increasing major economy developmental hub in Asia besides having wealthy natural resources. However, heavy metal (HM) pollution in the region is of increasing environmental and public concern. This study aimed to review and compile the concentrations of Cu, Pb, and Zn in the aquatic sediments of the ASEAN-5 countries published in the literature from 1981 to February 2021. The mean values of Cu, Pb, and Zn in aquatic sediments were elevated and localized in high human activity sites and compared to the earth’s upper continental crust and reference values. Based on 176 reports from 113 publications, the ranges of concentrations (mg/kg dry weight) were 0.09–3080 for Cu, 0.37–4950 for Zn, and 0.07–2666 for Pb. The ecological risk (ER) values ranged from 0.02–1077 for Cu, 0.01–95.2 for Zn, and 0.02–784 for Pb. All reports (100%) showed the Zn ER values were categorized as being between ‘low potential ecological risk’ and ‘considerable potential ecological risk’. Almost all Cu ER values (97.7%) also showed similar ranges of the above two risk categories except for a few reports. The highest Cu level (3080 mg/kg dry weight) was reported from a mine-tailing spill in Marinduque Island of the Philippines with ‘very high ecological risk’. In addition, drainage sediments in the western part of Peninsular Malaysia were categorized as Cu ’high potential ecological risk’. Almost all reports (96%) showed Pb ER values categorized as between ‘low potential ecological risk’ and ‘moderate potential ecological risk’ except for a few reports. Six reports showed Pb ER values of ‘considerable potential ecological risk’, while one report from Semarang (Indonesia) showed Pb ER of ‘very high ecological risk’ (Pb level of 2666 mg/kg dry weight). For the ingestion and dermal contact pathways for sediments from the ASEAN-5 countries, all non-carcinogenic risk (NCR) values (HI values 1.0) for Cu, Pb, and Zn reflected no NCR. The ER and human health risk assessment of Cu, Pb, and Zn were compared in an integrative and accurate manner after we reassessed the HM data mentioned in the literature. The synthesis carried out in this review provided the basis for us to consider Cu, Pb, and Zn as being of localized elevated levels. This provided evidence for the ASEAN-5 group of countries to be considered as being a new socio-economic corridor. Beyond any reasonable doubt, an ever-increasing anthropogenic input of HMs is to be expected to a certain degree. We believe that this paper provides the most fundamental useful baseline data for the future management and sustainable development of the aquatic ecosystems in the region. Lastly, we claim that this review is currently the most up-to-date review on this topic in the literature.


Author(s):  
Mark Seelos ◽  
Edwin Rivas Meraz ◽  
Marc Beutel ◽  
Samuel J. Traina ◽  
Byran Furhmann ◽  
...  

Author(s):  
Chinmay Bandopadhyay ◽  
Sanjib Kumar Manna ◽  
Srikanta Samanta ◽  
Atalanta Narayan Chowdhury ◽  
Nilanjan Maitra ◽  
...  

Author(s):  
Rafael Gomes Von Borowski ◽  
Danielle Silva Trentin

Bats are a key reservoir of coronaviruses (CoVs), including the agent of the severe acute respiratory syndrome, SARS-CoV-2, responsible for the recent deadly viral pneumonia pandemic. However, understanding how bats can harbor several microorganisms without developing illnesses is still a matter under discussion. Viruses and other pathogens are often studied as stand-alone even though it is known that, in nature, they mostly live in multi-species associations called biofilms - both externally and within the host. Microorganisms in biofilms are enclosed by an extracellular matrix that confers protection and improves survival. Previous studies have shown that viruses can secondarily colonize preexisting biofilms, and viral biofilms have also been already described. In this review, we raise the perspective that CoVs can persistently infect bats due to occurrence in biofilm structures. This phenomenon potentially provides an optimal environment for non-pathogenic and well-adapted viruses to interact with the host, as well as for viral recombination. Biofilms can also enhance virion viability in extracellular environments, such as in fomites and aquatic sediments, allowing viral persistence and dissemination. Moreover, understanding CoVs biofilm lifestyle in reservoirs might contribute to explain several burning questions that remain unanswered including persistence and transmissibility by highly pathogenic emerging CoVs.


Chemosphere ◽  
2021 ◽  
Vol 273 ◽  
pp. 129668
Author(s):  
Yang Li ◽  
Ying Ma ◽  
Zisheng Zhao ◽  
Xin Wen ◽  
Guangkuo Xu ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Evelyn Keaveney ◽  
Gerard Barrett ◽  
Paula Reimer ◽  
Maarten Blaauw

<p>Sequestration of organic carbon in aquatic sediments can depend on its source and potential lability. Studies have shown that bulk lake and marine sediment comprises carbon of different origin but its source has been difficult to attribute. A new Ramped Pyroxidation/Combustion (RPO) system in the <sup>14</sup>CHRONO Centre has been established. RPO is a technique that incrementally heats a sample, and allows for collection of the CO<sub>2 </sub>produced for radiocarbon analyses. The results show its utility in partitioning carbon sources in lake sediment (Rostherne Mere, UK, Santa María del Orolake, Mexico), and arctic marine sediment (Chukchi Sea and Beaufort Shelf). RPO and 2-stepped combustion<sup>1</sup>. <sup>14</sup>C indicated multiple carbon sources in Rostherne Mere sediment, some of which could be attributed to the construction of a sewage treatment works (STW) on the lake shore, and subsequently inputs from this STW. RPO identified 3 carbon fractions in Mexican Lake sediment, which provided a more accurate chronology, partitioning the contemporaneous sediment date from offsets induced from volcanic activity in the area. Results from Arctic marine sediment demonstrated inputs of carbon from ancient permafrost, providing a means to refine the chronologies and a basis for future research linked with carbon loss from thawing permafrost.</p><p><sup>1</sup>Keaveney et al. 2020. Journal of Palaeolimnology 64 347-363</p>


2021 ◽  
Author(s):  
Abhishek Painuly ◽  
Regina Katsman

<p>Gas-charged sediments of shallow water bodies are significant sources of atmospheric methane, an important greenhouse gas. Past accounts of gas bubbles developed in shallow aquatic sediments (and in their surrogates) have reported a controversial occurrence of vertical as well as horizontal bubbles topologies. Within the framework of tensile fracturing of muddy sediment produced by the growing bubbles, the vertical orientation of bubbles is well understood, however factors controlling horizontal bubble growth are largely unclear. This study is conducted by employing a mechanical/reaction–transport numerical model, which couples diffusion-led expansion of gas bubble and elastic-fracture mechanical response of sediment to its growth. Muddy sediment is assumed to exhibit a transverse anisotropy in fracture toughness (a property describing an easiness of breaking the inter particle bonds), attributed to partial or full alignment of plate-like clay particles. Our results demonstrate that bubbles growing in isotropic sediment develop a vertically oriented topology and start their ascent once reaching their mature sizes. Under an increasing measure of anisotropy, the bubbles grow horizontally at the initial stages, however at later stages they start evolving in vertical direction as well, under influence of gravity, and eventually initiate their vertical ascent as well. Our results suggest an explanation of apparent conundrum about preferred orientations of bubbles in muddy sediments. Laterally growing bubbles produced in anisotropic sediment are able to coalesce with neighboring ones and form interconnected permeable horizontal gas networks, as observed in some lab experiments. For the first time, our results reveal that anisotropy-led initial lateral bubble growth can also play a crucial role in accumulating gas reserve from long distances around large and small scale seeps and outlets, at continental margins and inland water bodies sediments. Additionally, horizontal bubbles tend to be stationary (in contrast to the vertical bubbles) thus being responsible for high gas storage (or retention) capability of aquatic sediments.</p>


Sign in / Sign up

Export Citation Format

Share Document