free energy minimization
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 19)

H-INDEX

22
(FIVE YEARS 1)

2021 ◽  
pp. 1-36
Author(s):  
Beren Millidge ◽  
Alexander Tschantz ◽  
Christopher L. Buckley

The expected free energy (EFE) is a central quantity in the theory of active inference. It is the quantity that all active inference agents are mandated to minimize through action, and its decomposition into extrinsic and intrinsic value terms is key to the balance of exploration and exploitation that active inference agents evince. Despite its importance, the mathematical origins of this quantity and its relation to the variational free energy (VFE) remain unclear. In this letter, we investigate the origins of the EFE in detail and show that it is not simply ”the free energy in the future.” We present a functional that we argue is the natural extension of the VFE but actively discourages exploratory behavior, thus demonstrating that exploration does not directly follow from free energy minimization into the future. We then develop a novel objective, the free energy of the expected future (FEEF), which possesses both the epistemic component of the EFE and an intuitive mathematical grounding as the divergence between predicted and desired futures.


Author(s):  
Alianna J. Maren

One of the biggest challenges in characterizing 2-D image topographies is finding a low-dimensional parameter set that can succinctly describe, not so much image patterns themselves, but the nature of these patterns. The 2-D Cluster Variation Method (CVM), introduced by Kikuchi in 1951, can characterize very local image pattern distributions using configuration variables, identifying nearest-neighbor, next-nearest-neighbor, and triplet configurations. Using the 2-D CVM, we can characterize 2-D topographies using just two parameters; the activation enthalpy and the interaction enthalpy. Initial investigations with two different representative topographies (``scale-free-like'' and ``rich club-like'') produce interesting results when brought to a CVM free energy minimum. Additional phase space investigations, where one of these two parameters has been set to zero, identify useful parameter ranges. Careful comparison of the analytically-predicted configuration variables versus those obtained when performing computational free energy minimization on a 2-D grid show that the computational results differ significantly from the analytic solution. The 2-D CVM can potentially function as a secondary free energy minimization within the hidden layer of a neural network, providing a basis for extending node activations over time and allowing temporal correlation of patterns.


Sign in / Sign up

Export Citation Format

Share Document