cytoplasmic male sterile
Recently Published Documents


TOTAL DOCUMENTS

431
(FIVE YEARS 37)

H-INDEX

39
(FIVE YEARS 3)

Planta ◽  
2022 ◽  
Vol 255 (2) ◽  
Author(s):  
Camille Carey ◽  
J. Scott Armstrong ◽  
Chad Hayes ◽  
W. Wyatt Hoback ◽  
Ali Zarrabi

2021 ◽  
pp. 9-22

The study was conducted in order to identify the suitable parental inbred lines using top cross method for improvement of new sunflower F1 single cross hybrids at research field of Seed and Plant Improvement Institute in Karaj, Iran during two Crop season (2018 and 2019). Experimental materials consisted of 31 restore lines and 43 cytoplasmic male sterile lines which were crossed with A1221 and R14 as the testers respectively. The developed F1 hybrids were evaluated for GCA of three breeding objectives i.e. flowering time, plant height and grain yield during two years replicated trials. Cluster analysis revealed two heterotic groups in which the restorer lines; R22, R24 and R38 (Grain yield of 33, 32 and 31 g head-1 respectively) and three CMS lines; A32, A370 and A110 (Grain yield of 47, 44 and 43 g head-1 respectively) were identified as the suitable restorer and cytoplasmic male sterile line for improvement of new sunflower single cross hybrids. Evaluation of specific combing ability of the resulted combinations will reveal the efficiency of this selection in the following generation.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Victoriano V. Casco ◽  
Rosemarie T. Tapic ◽  
Jerwin R. Undan ◽  
Anna Ma. Lourdes S. Latonio ◽  
Roel R. Suralta ◽  
...  

Abstract Background A combining ability analysis is a useful tool of plant breeders in screening and identifying promising parental lines with high potential for developing competitive rice hybrids. Also, one important factor that strongly determines the suitability of commercial utilization of hybrid rice parental lines is their extent of seed producibility. Methods In this study, the combining ability, floral biology and seed producibility of cytoplasmic male sterile (CMS) lines were investigated to identify good combiners with good seed production potential. The Line × Tester analysis was used to determine the general combining abilities (GCA) of hybrid rice parental lines, and Specific Combining Abilities (SCA) of the different hybrid combinations. A correlation analysis was also done to determine floral traits that influence the outcrossing rate of the CMS lines. There were 4 CMS lines, 6 restorer lines, 24 hybrid combinations and 1 check variety in a randomized complete block Design (RCBD) with 3 replicates. Results Results indicated that CMS lines IR79128B and IR102758B were good combiners and the most promising restorer lines were D2031-7-1-2R, Hanareumbyeo 2, and XTR036-54-10R. Based on specific combining ability test, the most promising combination was entry 10 (IR58025A/D2013-7-1-2R). It has the highest yield of 7496 kg ha−1, a high positive SCA score of 570.54, and highest standard heterosis of 12.9%. Based on floral traits, IR79128B was the most promising with a high positive GCA score of 186.93, panicle exertion rate of 74.8%, and a high outcrossing rate of 51%. There was a significant positive association between outcrossing rate, duration of floral opening, panicle exertion rate, and general combining ability. Conclusion The floral traits found to be significantly associated with outcrossing rate are useful selection criteria not only for identifying economically usable CMS lines but also for developing new and promising parental lines and hybrids. These CMS lines do not only give heterotic combinations but are also commercially producible, the two most important factors to the success of any hybrid rice breeding program.


2021 ◽  
Author(s):  
Shiho Omukai ◽  
Shin-ich Arimura ◽  
Kinya Toriyama ◽  
Tomohiko Kazama

AbstractPlant mitochondrial genomes sometimes carry cytoplasmic male sterility (CMS)-associated genes. These genes have been harnessed in agriculture to produce high-yielding F1 hybrid seeds in various crops. The gene orf352 was reported to be an RT102-type CMS gene in rice (Oryza sativa), although a causal demonstration of its role in CMS is lacking. Here, we employed mitochondrion-targeted transcription activator-like effector nucleases (mitoTALENs), to knock out orf352 from the mitochondrial genome in the cytoplasmic male sterile rice RT102A. We isolated 18 independent transformation events in RT102A that resulted in genome editing of orf352, including its complete removal from the mitochondrial genome in several plants. Sequence analysis around the mitoTALEN target sites revealed the repair of their induced double-strand breaks via homologous recombination. Near the 5ʹ target site, repair involved sequences identical to orf284, while repair of the 3ʹ target site yielded various new sequences that generated new chimeric genes consisting orf352 fragments. Plants with a new mitochondrial gene encoding amino acids 179 to 352 of ORF352 exhibited the same shrunken pollen grain phenotype as RT102A, whereas plants either lacking orf352 or harboring a new gene encoding amino acids 211 to 352 of ORF352 showed partial rescue of pollen viability and germination, although they failed to set seed. These results demonstrated that disruption of orf352 partially restored pollen development, indicating that amino acids 179 to 210 from ORF352 may contribute to the establishment of pollen abortion.


Author(s):  
Shahida Hashim ◽  
Phebe Ding ◽  
Mohd Firdaus Ismail ◽  
Asfaliza Ramli

Rice is a strictly self-pollinating crop. However, in hybrid rice seed production, an effective male sterility system is used to produce hybrid seed in bulk. In hybrid rice system, the pollen grains of cytoplasmic male sterile (CMS) are sterile and the female organ of the CMS depends on the fertile pollen released by the maintainer or restorer lines via out-crossing or cross-pollination in order to produce seed. Floral trait and flowering behavior of CMS and its corresponding maintainer or restorer lines are essential factors in hybrid rice seed production because they influenced the out-crossing or cross-pollination between parental lines. Two local CMSs and their corresponding maintainer lines were developed through breeding program in Malaysian Agricultural Research and Development Institute (MARDI) namely 0025A/0025B and 0047A/0047B. This study was carried out on floral traits and flowering behavior of these two hybrid line. Present studies have shown that there were variations between the CMS and its maintainer lines whether on floral trait or flowering behavior for both hybrid rice combinations. The results showed that stigma characters for both 0025A and 0047 were superior than their respective maintainers. Therefore, it is expected that the out-crossing rate would be high. Seeding date intervals need to be done on 0025A/0025B during nursery stage because the on-set of flowering between parental lines was significantly different. Panicle of both CMS was also classified as just exserted and partially-exserted and application of exogenous hormones such as gibberellic acid was useful to improve panicle elongation and consequently increase the seed set and yield. Correlation study indicates that the stigma area of both 0025A and 0047A has significant positive correlation with out-crossing rate.


Planta ◽  
2021 ◽  
Vol 253 (2) ◽  
Author(s):  
Abhishek Bohra ◽  
Prasad Gandham ◽  
Abhishek Rathore ◽  
Vivek Thakur ◽  
Rachit K. Saxena ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Juanjuan Feng ◽  
Xuexian Zhang ◽  
Meng Zhang ◽  
Liping Guo ◽  
Tingxiang Qi ◽  
...  

Abstract Background Cytoplasmic male sterile (CMS) with cytoplasm from Gossypium Trilobum (D8) fails to produce functional pollen. It is useful for commercial hybrid cotton seed production. The restore line of CMS-D8 containing Rf2 gene can restore the fertility of the corresponding sterile line. This study combined the whole genome resequencing bulked segregant analysis (BSA) with high-throughput SNP genotyping to accelerate the physical mapping of Rf2 locus in CMS-D8 cotton. Methods The fertility of backcross population ((sterile line×restorer line)×maintainer line) comprising of 1623 individuals was investigated in the field. The fertile pool (100 plants with fertile phenotypes, F-pool) and the sterile pool (100 plants with sterile phenotypes, S-pool) were constructed for BSA resequencing. The selection of 24 single nucleotide polymorphisms (SNP) through high-throughput genotyping and the development insertion and deletion (InDel) markers were conducted to narrow down the candidate interval. The pentapeptide repeat (PPR) family genes and upregulated genes in restore line in the candidate interval were analysed by qRT-PCR. Results The fertility investigation results showed that fertile and sterile separation ratio was consistent with 1:1. BSA resequencing technology, high-throughput SNP genotyping, and InDel markers were used to identify Rf2 locus on candidate interval of 1.48 Mb on chromosome D05. Furthermore, it was quantified in this experiment that InDel markers co-segregated with Rf2 enhanced the selection of the restorer line. The qRT-PCR analysis revealed PPR family gene Gh_D05G3391 located in candidate interval had significantly lower expression than sterile and maintainer lines. In addition, utilization of anther RNA-Seq data of CMS-D8 identified that the expression level of Gh_D05G3374 encoding NB-ARC domain-containing disease resistance protein in restorer lines was significantly higher than that in sterile and maintainer lines. Conclusions This study not only enabled us to precisely locate the restore gene Rf2 but also evaluated the utilization of InDel markers for marker assisted selection in the CMS-D8 Rf2 cotton breeding line. The results of this study provide an important foundation for further studies on the mapping and cloning of restorer genes.


Sign in / Sign up

Export Citation Format

Share Document