tight junction permeability
Recently Published Documents


TOTAL DOCUMENTS

204
(FIVE YEARS 18)

H-INDEX

49
(FIVE YEARS 4)

Insects ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 873
Author(s):  
Kyong Kim ◽  
Eun-Young Park ◽  
Dong-Jae Baek ◽  
Se-Eun Jang ◽  
Yoon-Sin Oh

Increased tight junction permeability and overproduction of proinflammatory cytokines are crucial pathophysiological mechanisms in inflammatory bowel disease (IBD). This study evaluated anti-inflammatory effects of aqueous ethanolic Gryllus bimaculatus extract (AE-GBE) against intestinal permeability on lipopolysaccharide (LPS)-treated Caco-2 cells. Treatment with AE-GBE increased cell viability and significantly reduced inflammatory mediators such as nitric oxide and LPS-induced reactive oxidative stress. LPS increased the expression levels of iNOS, Cox-2, and 4-hydroxylnonenal; however, these levels were attenuated by AE-GBE treatment. Moreover, the mRNA and protein expression levels of the inflammatory cytokines TNFα, IL-6, IL-1β, and IFNγ were increased by LPS, but were significantly reduced by AE-GBE treatment. Intestinal epithelial permeability and the related expression of the proteins Zoula ocludence-1, occludin, and claudin-1 was increased by LPS treatment, and this effect was significantly reduced by AE-GBE treatment. The reduction in AMPK phosphorylation in LPS-treated Caco-2 cells was reversed in activation by co-treatment with AE-GBE. In conclusion, AE-GBE can protect epithelial cells from LPS-induced impaired barrier integrity by increasing tight junction proteins and preventing various inflammatory mediators. Thus, AE-GBE has the potential to improve inflammation-related diseases, including IBD, by inhibiting excessive production of inflammation-inducing mediators.


2021 ◽  
Vol 12 ◽  
Author(s):  
Leila B. Giron ◽  
Harsh Dweep ◽  
Xiangfan Yin ◽  
Han Wang ◽  
Mohammad Damra ◽  
...  

A disruption of the crosstalk between the gut and the lung has been implicated as a driver of severity during respiratory-related diseases. Lung injury causes systemic inflammation, which disrupts gut barrier integrity, increasing the permeability to gut microbes and their products. This exacerbates inflammation, resulting in positive feedback. We aimed to test whether severe Coronavirus disease 2019 (COVID-19) is associated with markers of disrupted gut permeability. We applied a multi-omic systems biology approach to analyze plasma samples from COVID-19 patients with varying disease severity and SARS-CoV-2 negative controls. We investigated the potential links between plasma markers of gut barrier integrity, microbial translocation, systemic inflammation, metabolome, lipidome, and glycome, and COVID-19 severity. We found that severe COVID-19 is associated with high levels of markers of tight junction permeability and translocation of bacterial and fungal products into the blood. These markers of disrupted intestinal barrier integrity and microbial translocation correlate strongly with higher levels of markers of systemic inflammation and immune activation, lower levels of markers of intestinal function, disrupted plasma metabolome and glycome, and higher mortality rate. Our study highlights an underappreciated factor with significant clinical implications, disruption in gut functions, as a potential force that may contribute to COVID-19 severity.


2021 ◽  
Vol 27 (Supplement_1) ◽  
pp. S25-S25
Author(s):  
Li Zuo ◽  
Feng Cao ◽  
Wei-Ting Kuo ◽  
Jerrold Turner

Abstract Background Tumor necrosis factor (TNF) regulates intestinal epithelial tight junction permeability by activating myosin light chain kinase 1 (MLCK1) expression and enzymatic activity. MLCK1 recruitment to the apical perijunctional actomyosin ring (PAMR) is, however, required for barrier regulation; Divertin, a small molecule drug that blocks this recruitment, prevents barrier loss and attenuates both acute and chronic experimental diarrheal disease. We therefore hypothesized that MLCK1 recruitment to the PAMR requires interactions with as yet unidentified chaperone protein(s). Objective To identify binding partners and define the mechanisms by which they activate MLCK1 recruitment to the PAMR. Results We performed a yeast-2-hybrid (Y2H) screen using the MLCK1 domains required for PAMR recruitment as bait. FKBP8, which encodes a peptidyl-prolyl cis-trans isomerase (PPI), was recovered, and direct binding to the MLCK1 domains (Kd=~5mM) was confirmed using microscale thermophoresis (MST). This binding interaction required the FK506-binding PPI domain and was specifically inhibited by FK506 (tacrolimus). Immunofluorescent microscopy demonstrated partial colocalization of MLCK1 and FKBP8 within intestinal epithelial monolayers; TNF caused both to concentrate around the PAMR. To further characterize this interaction, we performed proximity ligation assays (PLA) and found that TNF increased interaction between MLCK1 and FKBP8 > 2-fold. FK506 prevented TNF-induced increases in PLA signal. FK506 was also able to reverse TNF-induced increases in myosin light chain (MLC) phosphorylation and tight junction permeability. In Caco-2 monolayers, FKBP8 knockout blocked TNF-induced MLCK1 recruitment, MLC phosphorylation, and tight junction barrier loss; all of which were restored by FKBP8 re-expression. In mice, MLC phosphorylation and intestinal barrier loss triggered by acute, anti-CD3-induced, T cell activation were blocked by luminal FK506. Importantly, this local FK506 treatment did not prevent anti-CD3-induced increases in mucosal TNF, IL-1b, and IFNg. Immunostains of biopsies from IBD patients documented increased PAMR MLC phosphorylation, MLCK1 recruitment, FKBP8 recruitment, and MLCK1-FKBP8 PLA signal relative to control subjects. Conclusions FKBP8 is a chaperone protein required for TNF-induced MLCK1 recruitment and barrier loss. This requires direct interaction between MLCK1 and the PPI domain of FKBP8. FK506 binding to the PPI domain displaces MLCK1 thereby preventing recruitment to the PAMR and barrier loss. These activities are separate from the immunosuppressive effects of FK506. We speculate that molecular blockade of the FKBP8-MLCK1 interaction may be a novel approach to barrier restoration and therapy of diseases associated with intestinal barrier dysfunction. Support NIH (DK068271, DK061931) and the NNSF of China (81800464, 82070548).


2020 ◽  
Author(s):  
Leila B. Giron ◽  
Harsh Dweep ◽  
Xiangfan Yin ◽  
Han Wang ◽  
Mohammad Damra ◽  
...  

ABSTRACTA disruption of the crosstalk between gut microbiota and the lung (gut-lung axis) has been implicated as a driver of severity during respiratory-related diseases. Lung injury causes systemic inflammation, which disrupts gut barrier integrity, increasing the permeability to gut microbes and their products. This exacerbates inflammation, resulting in positive feedback. To test the possibility that a disrupted gut contributes to Coronavirus disease 2019 (COVID-19) severity, we used a systems biology approach to analyze plasma from COVID-19 patients with varying disease severity and controls. Severe COVID-19 is associated with a dramatic increase in tight junction permeability and translocation of bacterial and fungal products into blood. This intestinal disruption and microbial translocation correlate strongly with increased systemic inflammation and complement activation, lower gut metabolic function, and higher mortality. Our study highlights a previously unappreciated factor with significant clinical implications, disruption in gut barrier integrity, as a force that contributes to COVID-19 severity.


2020 ◽  
Vol 159 (4) ◽  
pp. 1375-1389
Author(s):  
Manmeet Rawat ◽  
Meghali Nighot ◽  
Rana Al-Sadi ◽  
Yash Gupta ◽  
Dharmaprakash Viszwapriya ◽  
...  

2020 ◽  
Vol 64 (11) ◽  
pp. 1981-1983
Author(s):  
Marcelo T. Stumpf ◽  
Vivian Fischer ◽  
Darlene S. Daltro ◽  
Evelyn P. M. Alfonzo ◽  
Giovani J. Kolling ◽  
...  

2020 ◽  
Vol 21 (14) ◽  
pp. 5067
Author(s):  
Alexander G. Markov ◽  
Arina A. Fedorova ◽  
Violetta V. Kravtsova ◽  
Anastasia E. Bikmurzina ◽  
Larisa S. Okorokova ◽  
...  

The ability of exogenous low ouabain concentrations to affect claudin expression and therefore epithelial barrier properties was demonstrated previously in cultured cell studies. We hypothesized that chronic elevation of circulating ouabain in vivo can affect the expression of claudins and tight junction permeability in different tissues. We tested this hypothesis in rats intraperitoneally injected with ouabain (1 μg/kg) for 4 days. Rat jejunum, colon and brain frontal lobes, which are variable in the expressed claudins and tight junction permeability, were examined. Moreover, the porcine jejunum cell line IPEC-J2 was studied. In IPEC-J2-cells, ouabain (10 nM, 19 days of incubation) stimulated epithelial barrier formation, increased transepithelial resistance and the level of cSrc-kinase activation by phosphorylation, accompanied with an increased expression of claudin-1, -5 and down-regulation of claudin-12; the expression of claudin-3, -4, -8 and tricellulin was not changed. In the jejunum, chronic ouabain increased the expression of claudin-1, -3 and -5 without an effect on claudin-2 and -4 expression. In the colon, only down-regulation of claudin-3 was observed. Chronic ouabain protected the intestine transepithelial resistance against functional injury induced by lipopolysaccharide treatment or by modeled acute microgravity; this regulation was most pronounced in the jejunum. Claudin-1 was also up-regulated in cerebral blood vessels. This was associated with reduction of claudin-3 expression while the expression of claudin-5 and occludin was not affected. Altogether, our results confirm that circulating ouabain can functionally and tissue-specifically affect barrier properties of epithelial and endothelial tissues via Na,K-ATPase-mediated modulation of claudins expression.


Sign in / Sign up

Export Citation Format

Share Document