Adsorption Characteristics
Recently Published Documents


TOTAL DOCUMENTS

1924
(FIVE YEARS 694)

H-INDEX

87
(FIVE YEARS 28)

Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7217
Author(s):  
Qing Han ◽  
Cunbao Deng ◽  
Zhixin Jin ◽  
Tao Gao

In order to study differences in the methane adsorption characteristics of coal pores of different metamorphic degrees, 4 nm pore structure models based on three typical coal structure models with different metamorphic degrees were constructed. Based on the molecular mechanics and dynamics theory, the adsorption characteristics of methane in different coal rank pores were simulated by the grand canonical Monte Carlo (GCMC) and molecular dynamics methods. The isothermal adsorption curve, Van der Waals energy, concentration distribution, and diffusion coefficient of methane under different conditions were analyzed and calculated. The results showed that at the same pore size, the adsorption capacity of CH4 is positively correlated with pressure and metamorphic degree of coal, and the adsorption capacity of CH4 in high metamorphic coal is more affected by temperature. The relative concentration of CH4 in high-order coal pores is low, and the relative concentration at higher temperature and pressure conditions is high. The CH4 diffusion coefficient in high-rank coal is low, corresponding to the strong Van der Waals interaction between CH4 and coal. The research results are of great significance for further exploration of the interaction mechanism between CH4 and coal with different metamorphic degrees and can provide theoretical support for the selection of gas extraction parameters.


2021 ◽  
Author(s):  
BENSEDIRA Abderrahim ◽  
HADDAOUI Nacerddine ◽  
DOUFNOUNE Rachida ◽  
MEZIANE Ouahiba ◽  
N. S. Labidi

Abstract Conducting Polymeric composites have attracted great attention over the last years because of their potential uses in chemical, electronic and optical devices, and as catalysts as well as in adsorption processes. Chemical synthesis of polyaniline (PANI) and polyaniline-SiO2 composite and their adsorptive performance were reported in the present work. These materials were prepared and evaluated for their methylene blue (MB) dye adsorption characteristics from aqueous solution. Adsorption equilibrium kinetic and thermodynamic experiments of MB onto PANI and PANI/SiO2 were studied. The effects of initial dye concentration, contact time and temperature on the adsorption capacity of PANI/SiO2 for MB have been investigated. The pseudo-first order and pseudo-second order kinetic models were used to describe the kinetic data. It was found that adsorption kinetics followed the pseudo-second order at all of the studied temperatures. The Langmuir, Freundlich and Dubinin Raduschkevich adsorption models were used for the mathematical description and the fit obtained using the Dubinin Raduschkevich isotherm has a medium R2 value.


2021 ◽  
Author(s):  
Julia Subbotina ◽  
Vladimir Lobaskin

Understanding the specifics of interaction between protein and nanomaterial is crucial for designing efficient, safe, and selective nanoplatforms, such as biosensor or nanocarrier systems. Routing experimental screening for the most suitable complementary pair of biomolecule and nanomaterial used in such nanoplatforms might be a resource-intensive task. While a variety of computational tools is available for pre-screening libraries of small drug molecules interacting with proteins, options for high-throughput screening of protein libraries for binding affinities to new and existing nanomaterials are limited. In the current work, we present the results of a systematic computational study of protein interaction with zero-valent silver nanoparticles using a multiscale approach. A variety of blood plasma and dietary proteins, namely, bovine and human serum albumins, bovine and human hemoglobin, papain, bromelain, lysozyme, and bovine lactoferrin, were examined. Selected combinations of nanomaterial and proteins can serve as a starting model for developing noble metal-based nanocarriers and biosensors. The computed binding (adsorption) characteristics for selected proteins were validated by experimental data reported in the literature. An advanced in silico nano-QSAR/QSPR interfacial descriptor 〖log⁡P〗^NM was also introduced to characterize the relative hydrophobicity/hydrophilicity of the nanomaterial.


Water SA ◽  
2021 ◽  
Vol 47 (4 October) ◽  
Author(s):  
Bruna Martins Vicentin ◽  
Raquel Dalla Costa da Rocha

This work aims to study the potential of expanded perlite (EP) for amoxicillin (AMX) removal in aqueous solution. For this purpose, chemical, morphological, and textural characteristics of the EP were evaluated, in addition to AMX removal by the adsorption process. The kinetic, isothermal, and thermodynamic parameters were also assessed. The EP presented an isoelectric point of 6.5 and a surface with hydroxyl bands, which favour the adsorption process. Air bubbles were sealed and randomly connected with each other, increasing the surface area relative to the adsorption sites. These non-porous or macro-porous sites demonstrate efficiency in the mechanisms of mass transfer. AMX removal was determined to be a pseudo-second-order process since the adsorption velocity was proportional to the square of the available adsorption sites and indicates heterogeneity in the surface interactions between the adsorbed molecules. Also, the interactions were considered multilayer for low concentrations and monolayer for high concentrations (Sips isotherm). The adsorption process was endothermic and utilised a physical adsorption mechanism. Considering that no modification treatment was applied to the EP, and due to its neutral isoelectric point, macropores, amorphous and dipole induction force (physical adsorption) characteristics, favourable affinity between EP and AMX was observed.


Sign in / Sign up

Export Citation Format

Share Document