membrane organelle
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 6)

H-INDEX

11
(FIVE YEARS 0)

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 289
Author(s):  
Jie Li ◽  
Yanzhuang Wang

The Golgi apparatus is a membrane organelle located in the center of the protein processing and trafficking pathway. It consists of sub-compartments with distinct biochemical compositions and functions. Main functions of the Golgi, including membrane trafficking, protein glycosylation, and sorting, require a well-maintained stable microenvironment in the sub-compartments of the Golgi, along with metal ion homeostasis. Metal ions, such as Ca2+, Mn2+, Zn2+, and Cu2+, are important cofactors of many Golgi resident glycosylation enzymes. The homeostasis of metal ions in the secretory pathway, which is required for proper function and stress response of the Golgi, is tightly regulated and maintained by transporters. Mutations in the transporters cause human diseases. Here we provide a review specifically focusing on the transporters that maintain Golgi metal ion homeostasis under physiological conditions and their alterations in diseases.


2021 ◽  
Vol 19 ◽  
Author(s):  
Zeyu Zhang ◽  
Anke Zhang ◽  
Yibo Liu ◽  
Xiaoming Hu ◽  
Yuanjian Fang ◽  
...  

: Spontaneous subarachnoid hemorrhage (SAH) accounts for 5-10% of all strokes, and is a subtype of hemorrhagic stroke that places a heavy burden on health care. Despite great progress in surgical clipping and endovascular treatment for ruptured aneurysms, cerebral vasospasm (CVS) and delayed cerebral ischemia (DCI) threaten the long-term outcomes of patients with SAH. Moreover, there are limited drugs available to reduce the risk of DCI and adverse outcomes in SAH patients. New insight suggests that early brain injury (EBI), which occurs within 72 h after the onset of SAH, may lay the foundation for further DCI development and poor outcomes. The mechanisms of EBI mainly include excitotoxicity, oxidative stress, neuroinflammation, blood-brain barrier (BBB) destruction, and cellular death. Mitochondria are a double-membrane organelle, and they play an important role in energy production, cell growth, differentiation, apoptosis, and survival. Mitochondrial dysfunction, which can lead to mitochondrial membrane potential (ΔΨm) collapse, overproduction of reactive oxygen species (ROS), release of apoptogenic proteins, disorders of mitochondrial dynamics, and activation of mitochondria-related inflammation, is considered a novel mechanism of EBI related to DCI as well as post-SAH outcomes. In addition, mitophagy is activated after SAH. In this review, we discuss the latest perspectives on the role of mitochondria in EBI and DCI after SAH. We emphasize the potential of mitochondria as therapeutic targets, and summarize the promising therapeutic strategies targeting mitochondria for SAH.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 694
Author(s):  
Georgios Konstantinidis ◽  
Nektarios Tavernarakis

Autophagy is an evolutionarily conserved degradation process maintaining cell homeostasis. Induction of autophagy is triggered as a response to a broad range of cellular stress conditions, such as nutrient deprivation, protein aggregation, organelle damage and pathogen invasion. Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane organelle referred to as the autophagosome with subsequent degradation of its contents upon delivery to lysosomes. Autophagy plays critical roles in development, maintenance and survival of distinct cell populations including neurons. Consequently, age-dependent decline in autophagy predisposes animals for age-related diseases including neurodegeneration and compromises healthspan and longevity. In this review, we summarize recent advances in our understanding of the role of neuronal autophagy in ageing, focusing on studies in the nematode Caenorhabditis elegans.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sean McCutcheon ◽  
Randy F. Stout ◽  
David C. Spray

Abstract Gap junction (GJ) channels permit molecules, such as ions, metabolites and second messengers, to transfer between cells. Their function is critical for numerous cellular interactions, providing exchange of metabolites, signaling molecules, and ionic currents. GJ channels are composed of Connexin (Cx) hexamers paired across extracellular space and typically form large rafts of clustered channels, called plaques, at cell appositions. Cxs together with molecules that interact with GJ channels make up a supramolecular structure known as the GJ Nexus. While the stability of connexin localization in GJ plaques has been studied, mobility of other Nexus components has yet to be addressed. Colocalization analysis of several nexus components and other membrane proteins reveal that certain molecules are excluded from the GJ plaque (Aquaporin 4, EAAT2b), while others are quite penetrant (lipophilic molecules, Cx30, ZO-1, Occludin). Fluorescence recovery after photobleaching of tagged Nexus-associated proteins showed that mobility in plaque domains is affected by mobility of the Cx proteins. These novel findings indicate that the GJ Nexus is a dynamic membrane organelle, with cytoplasmic and membrane-embedded proteins binding and diffusing according to distinct parameters.


2020 ◽  
Vol 6 (5) ◽  
pp. 211-221
Author(s):  
Han Song ◽  
Gang Zheng ◽  
Xue-Feng Shen ◽  
Zai-Hua Zhao ◽  
Yang Liu ◽  
...  

Abstract Understanding the precise intracellular localization of lead (Pb) is a key in deciphering processes in Pb-induced toxicology. However, it is a great challenge to trace Pb in vitro, especially in cultured cells. We aimed to find an innovative and efficient approach to investigate distribution of Pb in cells and to validate it through determining the subcellular Pb content. We identified its ultra-structural distribution with autometallography under electron microscopy in a choroidal epithelial Z310 cell line. Electron microscopy in combination with energy-dispersive X-ray spectroscope (EDS) was employed to provide further evidence of Pb location. In addition, Pb content was determined in the cytosol, membrane/organelle, nucleus and cytoskeleton fractions with atomic absorption spectroscopy. Pb was found predominantly inside the nuclear membranes and some was distributed in the cytoplasm under low-concentration exposure. Nuclear existence of Pb was verified by EDS under electron microscopy. Once standardized for protein content, Pb percentage in the nucleus fraction reached the highest level (76%). Our results indicate that Pb is accumulated mainly in the nucleus of choroid plexus. This method is sensitive and precise in providing optimal means to study the ultra-structural localization of Pb for in vitro models. In addition, it offers the possibility of localization of other metals in cultured cells. Some procedures may also be adopted to detect target proteins via immunoreactions.


2020 ◽  
Author(s):  
Sean McCutcheon ◽  
Randy F. Stout ◽  
David C. Spray

AbstractGap junction (GJ) channels permit molecules, such as ions, metabolites and second messengers, to transfer between cells. Their function is critical for numerous cellular interactions. GJ channels are composed of Connexin (Cx) hexamers paired across extracellular space and typically form large rafts of clustered channels, called plaques, at cell appositions. Cxs together with molecules that interact with GJ channels make up a supramolecular structure known as the GJ Nexus. While the stability of connexin localization in GJ plaques has been studied, mobility of other Nexus components has yet to be addressed. Colocalization analysis of several nexus components and other membrane proteins reveal that certain molecules are excluded from the GJ plaque (Aquaporin 4, EAAT2b), while others are quite penetrant (lipophilic molecules, Cx30, ZO-1, Occludin). Fluorescence recovery after photobleaching (FRAP) of tagged Nexus-associated proteins showed that mobility in plaque domains is affected by mobility of the Cx proteins. These novel findings indicate that the GJ Nexus is a dynamic membrane organelle, with cytoplasmic and membrane-embedded proteins binding and diffusing according to distinct parameters.Summary StatementGap junctions are clustered membrane channels in plasma membrane of astrocytes and other cells. We report new information on how gap junctions control location and mobility of other astrocyte proteins.


2018 ◽  
Vol 29 (11) ◽  
pp. 3677-3685 ◽  
Author(s):  
Rafael R. Castillo ◽  
Daniel Lozano ◽  
María Vallet-Regí

2017 ◽  
Vol 61 (6) ◽  
pp. 585-596 ◽  
Author(s):  
Maria Zachari ◽  
Ian G. Ganley

Autophagy is a vital lysosomal degradation pathway that serves as a quality control mechanism. It rids the cell of damaged, toxic or excess cellular components, which if left to persist could be detrimental to the cell. It also serves as a recycling pathway to maintain protein synthesis under starvation conditions. A key initial event in autophagy is formation of the autophagosome, a unique double-membrane organelle that engulfs the cytosolic cargo destined for degradation. This step is mediated by the serine/threonine protein kinase ULK1 (unc-51-like kinase 1), which functions in a complex with at least three protein partners: FIP200 (focal adhesion kinase family interacting protein of 200 kDa), ATG (autophagy-related protein) 13 (ATG13), and ATG101. In this artcile, we focus on the regulation of the ULK1 complex during autophagy initiation. The complex pattern of upstream pathways that converge on ULK1 suggests that this complex acts as a node, converting multiple signals into autophagosome formation. Here, we review our current understanding of this regulation and in turn discuss what happens downstream, once the ULK1 complex becomes activated.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 2050 ◽  
Author(s):  
Shijiao Huang ◽  
Yanzhuang Wang

The Golgi apparatus is a central membrane organelle for trafficking and post-translational modifications of proteins and lipids in cells. In mammalian cells, it is organized in the form of stacks of tightly aligned flattened cisternae, and dozens of stacks are often linked laterally into a ribbon-like structure located in the perinuclear region of the cell. Proper Golgi functionality requires an intact architecture, yet Golgi structure is dynamically regulated during the cell cycle and under disease conditions. In this review, we summarize our current understanding of the relationship between Golgi structure formation, function, and regulation, with focus on how post-translational modifications including phosphorylation and ubiquitination regulate Golgi structure and on how Golgi unstacking affects its functions, in particular, protein trafficking, glycosylation, and sorting in mammalian cells.


2014 ◽  
Vol 29 (2) ◽  
pp. 1
Author(s):  
F. Gómez ◽  
T. Horiguchi

Ellobiopsis chattoni is the type species of the ellobiopsids, an enigmatic lineage of parasitic alveolates that branched between the syndinean dinoflagellates and the perkinsids. We have investigated the ultrastructure of four trophonts from three calanoid copepod hosts collected from the port of Valencia, northwestern Mediterranean Sea. The cell wall showed a thick and homogenous layer and flask-shaped mucocysts that excreted an electron-dense substance that forms the outer layer. The cell wall in the attachment peduncle of Ellobiopsis was thicker and with numerous invaginations. The inner section showed numerous longitudinal channels here interpreted as conduits for the transport of host fluids. Trophomere and gonomere were separated by a thin septum with a central pore. Before the mature gonomere detached from the trophomere, the area of junction became undulated. Deficiencies in the fixation of the membrane organelle preclude discussing on other ultrastructural features. To date the ultrastructure of three ellobiopsid genera have been examined. The trophonts of Ellobiopsis and Thalassomyces showed a high similarity in the cell wall, with characteristic flaskshaped mucocysts. The lack of flask-shaped mucocysts in Ellobiocystis and other morphological and ecological differences argue against the monophyly of the ellobiopsids. Caracteres ultrastucturales del dinoflagelado basal Ellobiopsis chattoni (Ellobiopsidae, Alveolata), un parásito de copépodos Ellobiopsis chattoni es la especie tipo de los ellobiópsidos, un enigmático linaje de alveolados parásitos que se sitúa entre los dinoflagelados Syndiniales y los perkinsoides. Hemos examinado la ultraestructura de cuatro trofontes que parasitaban tres copépodos calanoides procedentes del puerto de Valencia, Mediterráneo noroccidental. La pared celular presenta una capa gruesa y homogénea con mucocistos con forma de matraz que excretan una substancia electro-densa que forma la capa externa. El pedúnculo de adhesión de Ellobiopsis presenta una pared celular más ancha y con numerosas invaginaciones. El pedúnculo en su sección interna muestra numerosos canales longitudinales cuya función se ha interpretado como conductos para el transporte de los fluidos del hospedador. El trofonte y el gonómero están separados por un fino septo con un poro central. Esa región de unión es undulada cuando el gonomero maduro se separe del trofonte. Otros caracteres ultrastructurales no pueden ser descritos debido a deficiencias en la fijación de las membranas de los orgánulos. Hasta ahora se ha examinado la ultrastructura de tres géneros de ellobiopsidos. Los trofontes de Ellobiopsis y Thalassomyces muestran una gran similitud en su pared celular que presenta el mismo tipo de mucocistos. En contraste, la falta de mucocistos con forma de matraz en Ellobiocystis, además de otras diferencias morfológicas y ecológicas, pone en duda el supuesto origen monofilético de los ellobiópsidos.


Sign in / Sign up

Export Citation Format

Share Document