intracellular infections
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 39)

H-INDEX

24
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Brahmaji Sontyana ◽  
Rohini Shrivastava ◽  
Srikanth Battu ◽  
Sudip Ghosh ◽  
Sangita Mukhopadhyay

Macrophages are important cells that regulate various innate functions. Macrophages after engulfment of pathogens proceed for phagosome maturation and finally fuse with lysosomes to kill pathogens. Although pathogen degradation is one of the important functions of phagosomes, various immune-effector functions of macrophages are also dependent on the phagosome maturation process. This review discusses signaling processes regulating phagosome maturation as well as various effector functions of macrophages such as apoptosis, antigen presentation, autophagy and inflammasome that are dependent on the phagosome maturation process. It also discusses strategies adopted by various intracellular pathogens to counteract these functions to evade intracellular destruction mechanisms. These studies may give direction for the development of new therapeutics to control various intracellular infections.


2021 ◽  
pp. 030098582110526
Author(s):  
Stefano Bagatella ◽  
Leticia Tavares-Gomes ◽  
Anna Oevermann

The bacterium Listeria monocytogenes ( Lm) is widely distributed in the environment as a saprophyte, but may turn into a lethal intracellular pathogen upon ingestion. Invasive infections occur in numerous species worldwide, but most commonly in humans and farmed ruminants, and manifest as distinct forms. Of those, neuroinfection is remarkably threatening due to its high mortality. Lm is widely studied not only as a pathogen but also as an essential model for intracellular infections and host-pathogen interactions. Many aspects of its ecology and pathogenesis, however, remain unclear and are rarely addressed in its natural hosts. This review highlights the heterogeneity and adaptability of Lm by summarizing its association with the environment, farm animals, and disease. It also provides current knowledge on key features of the pathology and (molecular) pathogenesis of various listeriosis forms in naturally susceptible species with a special focus on ruminants and on the neuroinvasive form of the disease. Moreover, knowledge gaps on pathomechanisms of listerial infections and relevant unexplored topics in Lm pathogenesis research are highlighted.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3360
Author(s):  
Bart L. van den Eshof ◽  
Lobna Medfai ◽  
Emanuele Nolfi ◽  
Magdalena Wawrzyniuk ◽  
Alice J. A. M. Sijts

Proteasomes are responsible for intracellular proteolysis and play an important role in cellular protein homeostasis. Cells of the immune system assemble a specialized form of proteasomes, known as immunoproteasomes, in which the constitutive catalytic sites are replaced for cytokine-inducible homologues. While immunoproteasomes may fulfill all standard proteasome’ functions, they seem specially adapted for a role in MHC class I antigen processing and CD8+ T-cell activation. In this way, they may contribute to CD8+ T-cell-mediated control of intracellular infections, but also to the immunopathogenesis of autoimmune diseases. Starting at the discovery of its catalytic subunits in the genome, here, we review the observations shaping our current understanding of immunoproteasome function, and the consequential novel opportunities for immune intervention.


Author(s):  
Grace E. Wardell ◽  
Michael F. Hynes ◽  
Peter J. Young ◽  
Ellie Harrison

Rhizobia are one of the most important and best studied groups of bacterial symbionts. They are defined by their ability to establish nitrogen-fixing intracellular infections within plant hosts. One surprising feature of this symbiosis is that the bacterial genes required for this complex trait are not fixed within the chromosome, but are encoded on mobile genetic elements (MGEs), namely plasmids or integrative and conjugative elements. Evidence suggests that many of these elements are actively mobilizing within rhizobial populations, suggesting that regular symbiosis gene transfer is part of the ecology of rhizobial symbionts. At first glance, this is counterintuitive. The symbiosis trait is highly complex, multipartite and tightly coevolved with the legume hosts, while transfer of genes can be costly and disrupt coadaptation between the chromosome and the symbiosis genes. However, horizontal gene transfer is a process driven not only by the interests of the host bacterium, but also, and perhaps predominantly, by the interests of the MGEs that facilitate it. Thus understanding the role of horizontal gene transfer in the rhizobium–legume symbiosis requires a ‘mobile genetic element's-eye view' on the ecology and evolution of this important symbiosis. This article is part of the theme issue ‘The secret lives of microbial mobile genetic elements’.


2021 ◽  
Vol 218 (11) ◽  
Author(s):  
Eva-Maria Frickel ◽  
Christopher A. Hunter

The intracellular parasite Toxoplasma gondii has long provided a tractable experimental system to investigate how the immune system deals with intracellular infections. This review highlights the advances in defining how this organism was first detected and the studies with T. gondii that contribute to our understanding of how the cytokine IFN-γ promotes control of vacuolar pathogens. In addition, the genetic tractability of this eukaryote organism has provided the foundation for studies into the diverse strategies that pathogens use to evade antimicrobial responses and now provides the opportunity to study the basis for latency. Thus, T. gondii remains a clinically relevant organism whose evolving interactions with the host immune system continue to teach lessons broadly relevant to host–pathogen interactions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Laura Hobbs ◽  
Leah Allen ◽  
Megan Bias ◽  
Stephanie Johnson ◽  
Hannah DeRespiris ◽  
...  

Listeria monocytogenes is a Gram-positive, intracellular pathogen responsible for the highly fatal foodborne illness listeriosis. Establishing intracellular infections requires the coordinated expressions of a variety of virulence factors, such as the pore-forming toxin listeriolysin O (LLO), in response to various intra- and extracellular signals. For example, we previously reported that L. monocytogenes differentially modulated LLO production in response to exogenous propionate, a short chain fatty acid either used in salt form as a human food ingredient or produced endogenously by gut microbial fermentation. Therefore, propionate is likely a continuously present signal throughout the L. monocytogenes transmission and infection process. However, little is known about the role of propionate in modulating L. monocytogenes-host interactions. Here we investigated the impact of propionate treatment on L. monocytogenes intracellular infections using cell culture infection models. Propionate treatment was performed separately on L. monocytogenes or host cells before or during infections to better distinguish pathogen-versus-host responses to propionate. Intracellular CFU in RAW264.7 macrophages and plaque diameters in L-fibroblasts were measured as proxy for intracellular infection outcomes. Nitrite levels and cellular morphology were also measured to assess host responses to propionate. We found that propionate pretreatment of anaerobic, but not aerobic, L. monocytogenes significantly enhanced subsequent intracellular infections in both cell types and nitrite production by infected macrophages. Propionate treatment of uninfected macrophages significantly altered cell morphology, seen by longer cells and greater migration, and reduced nitrite concentration in activated macrophages. Treatment of macrophages with propionate prior to or during infections significantly inhibited intracellular growth of L. monocytogenes, including those pre-treated with propionate. These results showcased an opposing effect of propionate on L. monocytogenes intracellular infections and strongly support propionate as an important signaling molecule for both the pathogen and the host cell that can potentially alter the outcome of L. monocytogenes-host interactions.


mSphere ◽  
2021 ◽  
Author(s):  
Emily J. Strong ◽  
Tony W. Ng ◽  
Steven A. Porcelli ◽  
Sunhee Lee

Tuberculosis is a significant global infectious disease caused by infection of the lungs with Mycobacterium tuberculosis , which then resides and replicates mainly within host phagocytic cells. Autophagy is a complex host cellular process that helps control intracellular infections and enhance innate and adaptive immune responses.


Author(s):  
John P. McCutcheon

Microbes gain access to eukaryotic cells as food for bacteria-grazing protists, for host protection by microbe-killing immune cells, or for microbial benefit when pathogens enter host cells to replicate. But microbes can also gain access to a host cell and become an important—often required—beneficial partner. The oldest beneficial microbial infections are the ancient eukaryotic organelles now called the mitochondrion and plastid. But numerous other host-beneficial intracellular infections occur throughout eukaryotes. Here I review the genomics and cell biology of these interactions with a focus on intracellular bacteria. The genomes of host-beneficial intracellular bacteria have features that span a previously unfilled gap between pathogens and organelles. Host cell adaptations to allow the intracellular persistence of beneficial bacteria are found along with evidence for the microbial manipulation of host cells, but the cellular mechanisms of beneficial bacterial infections are not well understood. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 12 ◽  
Author(s):  
Susana P. Mejía ◽  
Arturo Sánchez ◽  
Viviana Vásquez ◽  
Jahir Orozco

Infectious diseases caused by intracellular microorganisms represent a significant challenge in medical care due to interactions among drugs during coinfections and the development of resistance in microorganisms, limiting existing therapies. This work reports on itraconazole (ITZ) encapsulated into functional polymeric nanoparticles for their targeted and controlled release into macrophages to fight intracellular infections. NPs are based on poly (lactic acid-co-glycolic acid) (PLGA) polymers of different compositions, molecular weights, and lactic acid–to–glycolic acid ratios. They were self-assembled using the high-energy nanoemulsion method and characterized by transmission electron microscopy, Fourier transform infrared spectroscopy (FT-IR), and differential scanning calorimetry. It was studied how the polymer-to-drug ratio, changes in the aqueous phase pH, and type and concentration of surfactant affected nanocarriers’ formation, drug-loading capacity, and encapsulation efficiency. Results showed that drug-loading capacity and encapsulation efficiency reached 6.7 and 80%, respectively, by lowering the pH to 5.0 and using a mixture of surfactants. Optimized formulation showed an initial immediate ITZ release, followed by a prolonged release phase that fitted better with a Fickian diffusion kinetic model and high stability at 4 and 37°C. NPs functionalized by using the adsorption and carbodiimide methods had different efficiencies, the carbodiimide approach being more efficient, stable, and reproducible. Furthermore, linking F4/80 and mannose to the NPs was demonstrated to increase J774A.1 macrophages’ uptake. Overall, in vitro assays showed the nanosystem’s efficacy to eliminate the Histoplasma capsulatum fungus and pave the way to design highly efficient nanocarriers for drug delivery against intracellular infections.


Sign in / Sign up

Export Citation Format

Share Document