electrochemical model
Recently Published Documents


TOTAL DOCUMENTS

386
(FIVE YEARS 152)

H-INDEX

39
(FIVE YEARS 10)

Author(s):  
Julian Ascolani-Yael ◽  
Alejandra Montenegro-Hernandez ◽  
Laura C. Baqué ◽  
Lucía M. Toscani ◽  
Alberto Caneiro ◽  
...  

Abstract This work presents a comparative study of the diffusion (Dchem) and surface exchange coefficients (kchem) of porous La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) and Co3O4 nanoparticles decorated LSCF electrodes. The study was carried out using the 3DT-EIS method, which combines Electrochemical Impedance Spectroscopy experiments with FIB-SEM tomography data through an adapted Transmission Line - Adler Lane Steele electrochemical model. A reduction of the polarization resistance of about 60% was measured for the Co3O4 decorated LSCF respect to the reference LSCF cathode, in air at 700 °C. The Co3O4 decoration was found to modify the ORR surface reaction limiting mechanism from O2 dissociation to O-ion incorporation, whereas the diffusion coefficient was not modified by the decoration, which represents a surface diffusion process for both electrodes. After the EIS measurements, the Co3O4 particles were almost no longer visible by Field-Emission SEM on the surface of the decorated sample, but signs that these particles play an active role in Sr Segregation were observed by STEM-EDS, in particular by concentrating the segregated SrO in the surroundings of the decorated particles.


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 56
Author(s):  
Andraž Kravos ◽  
Tomaž Katrašnik

Achieving efficient solid oxide fuel cell operation and simultaneous prevention of degradation effects calls for the development of precise on-line monitoring and control tools based on predictive, computationally fast models. The originality of the proposed modelling approach originates from the hypothesis that the innovative derivation procedure enables the development of a thermodynamically consistent multi-species electrochemical model that considers the electrochemical co-oxidation of carbon monoxide and hydrogen in a closed-form. The latter is achieved by coupling the equations for anodic reaction rates with the equation for anodic potential. Furthermore, the newly derived model is capable of accommodating the diffusive transport of gaseous species through the gas diffusion layer, yielding a computationally efficient quasi-one-dimensional model. This resolves a persistent knowledge gap, as the proposed modelling approach enables the modelling of multi-species fuels in a closed form, resulting in very high computational efficiency, and thus enable the model’s real-time capability. Multiple validation steps against polarisation curves with different fuel mixtures confirm the capability of the newly developed model to replicate experimental data. Furthermore, the presented results confirm the capability of the model to accurately simulate outside the calibrated variation space under different operating conditions and reformate mixtures. These functionalities position the proposed model as a beyond state-of-the-art tool for model supported development and control applications.


Author(s):  
Vinod Janardhanan

Abstract Solid oxide cells (SOC) are ideal candidates for the electrochemical conversion of H2O and CO2 into H2 and CO using renewable sources. This work develops different electrochemical models for the reduction of H2O and CO2 based on elementary step kinetics and discriminates them based on their ability to predict experimentally measured cell performances. The thermo-catalytic chemistry is represented using a micro kinetic model, which is coupled to the electrochemical model through the surface coverage terms. A one dimensional representation of SOC resolving the cell across the thickness of the electrodes is used for simulations. The source terms for the species transport equations are calculated using the micro kinetic model by applying mean field approximation. The discussion in the paper covers aspects related to parameter fitting, model development, solution methodology, model discrimination and identification of rate limiting step.


Author(s):  
Alana Aragon Zulke ◽  
Ivan Korotkin ◽  
Jamie M. Foster ◽  
Mangayarkarasi Nagarathinam ◽  
Harry Hoster ◽  
...  

Abstract We demonstrate the predictive power of a parametrised Doyle-Fuller-Newman (DFN) model of a commercial cylindrical (21700) lithium-ion cell with NCA/Gr-SiOx chemistry. Model parameters result from the deconstruction of a fresh commercial cell to determine/confirm chemistry and microstructure, and also from electrochemical experiments with half-cells built from electrode samples. The simulations predict voltage proles for (i) galvanostatic discharge and (ii) drive-cycles. Predicted voltage responses deviate from measured ones by <1% throughout at least 95% of a full galvanostatic discharge, whilst the drive cycle discharge is matched to a 1-3% error throughout. All simulations are performed using the online computational tool DandeLiion, which rapidly solves the DFN model using only modest computational resource. The DFN results are used to quantify the irreversible energy losses occurring in the cell and deduce their location. In addition to demonstrating the predictive power of a properly validated DFN model, this work provides a novel simplifed parametrisation work that can be used to accurately calibrate an electrochemical model of a cell.


2021 ◽  
Author(s):  
◽  
Michael Charles Harold McKubre

<p>Work is reported on the development of a high precision, low frequency impedance bridge, and the use of impedance measurement in characterising the induced polarisation effect of unmineralised material. Impedance spectra for a variety of laboratory model clay/rock/electrolyte systems are analysed in terms of an equivalent circuit. By measuring the dependence of the parameters of this circuit, on such variables as electrolyte type and concentration, temperature and pore geometry, an electrochemical model for membrane polarisation has been developed. Polarisation is considered to arise from diffusional limitation of cations at the membrane/electrolyte interface of clay aggregations in rock pores, and this is found to be amenable to a Warburg diffusional impedance analysis.</p>


2021 ◽  
Author(s):  
◽  
Michael Charles Harold McKubre

<p>Work is reported on the development of a high precision, low frequency impedance bridge, and the use of impedance measurement in characterising the induced polarisation effect of unmineralised material. Impedance spectra for a variety of laboratory model clay/rock/electrolyte systems are analysed in terms of an equivalent circuit. By measuring the dependence of the parameters of this circuit, on such variables as electrolyte type and concentration, temperature and pore geometry, an electrochemical model for membrane polarisation has been developed. Polarisation is considered to arise from diffusional limitation of cations at the membrane/electrolyte interface of clay aggregations in rock pores, and this is found to be amenable to a Warburg diffusional impedance analysis.</p>


Sign in / Sign up

Export Citation Format

Share Document