bone material properties
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 27)

H-INDEX

20
(FIVE YEARS 3)

Author(s):  
Manuela Schoeb ◽  
Elizabeth M Winter ◽  
Maria A Sleddering ◽  
Mirjam A Lips ◽  
Abbey Schepers ◽  
...  

Abstract Context In primary hyperparathyroidism (PHPT) bone mineral density (BMD) is typically decreased in cortical bone and relatively preserved in trabecular bone. An increased fracture rate is observed however not only at peripheral sites but also at the spine, and fractures occur at higher BMD values than expected. We hypothesized that components of bone quality other than BMD are affected in PHPT as well. Objective To evaluate bone material properties using Impact Microindentation (IMI) in PHPT patients. Methods In this cross-sectional study, Bone Material Strength index (BMSi) was measured by IMI at the midshaft of the tibia in 37 patients with PHPT (28 women), 11 of whom had prevalent fragility fractures, and 37 euparathyroid controls (28 women) matched for age, gender and fragility fracture status. Results Mean age of PHPT patients and controls was 61.8±13.3 and 61.0±11.8 years, respectively, p=0.77. Calcium and PTH levels were significantly higher in PHPT patients but BMD at the lumbar spine (0.92±0.15 vs 0.89±0.11, p=0.37) and the femoral neck (0.70±0.11 vs 0.67±0.07, p=0.15) were comparable between groups. BMSi however was significantly lower in PHPT patients than in controls (78.2±5.7 vs 82.8±4.5, p<0.001). In addition, BMSi was significantly lower in 11 PHPT patients with fragility fractures than in the 26 PHPT patients without fragility fractures (74.7±6.0 vs 79.6±5.0, p=0.015). Conclusion Our data indicate that bone material properties are altered in PHPT patients and most affected in those with prevalent fractures. IMI might be a valuable additional tool in the evaluation of bone fragility in patients with PHPT.


Bone ◽  
2021 ◽  
pp. 115900
Author(s):  
Nadja Fratzl-Zelman ◽  
Katherine Wesseling-Perry ◽  
Riikka E. Mäkitie ◽  
Stéphane Blouin ◽  
Markus A. Hartmann ◽  
...  

Bone Reports ◽  
2020 ◽  
Vol 13 ◽  
pp. 100395
Author(s):  
Stamatia Rokidi ◽  
Natalie Bravenboer ◽  
Sonja Gamsjaeger ◽  
Pascale Chavassieux ◽  
Jochen Zwerina ◽  
...  

2020 ◽  
Vol 6 (3) ◽  
pp. 111-114
Author(s):  
Jack Wilkie ◽  
Paul D. Docherty ◽  
Knut Möller

AbstractINTRODUCTION: A torque-rotation model of the bone-screwing process has been proposed. Identification of model parameters using recorded data could potentially be used to determine the material properties of bone. These properties can then be used to recommend tightening torques to avoid over or under-tightening of bone screws. This paper improves an existing model to formulate it in terms of material properties and remove some assumptions. METHOD: The modelling methodology considers a critical torque, which is required to overcome friction and advance the screw into the bone. Below this torque the screw may rotate with elastic deformation of the bone tissue, and above this the screw moves relative to the bone, and the speed is governed by a speed-torque model of the operator’s hand. The model is formulated in terms of elastic modulus, ultimite tensile strength, and frictional coefficient of the bone and the geometry of the screw and hole. RESULTS: The model output shows the speed decreasing and torque increasing as the screw advances into the bone, due to increasing resistance. The general shape of the torque and speed follow the input effort. Compared with the existing model, this model removes the assumption of viscous friction, models the increase in friction as the screw advances into the bone, and is directly in terms of the bone material properties. CONCLUSION: The model presented makes significant improvements on the existing model. However it is intended for use in parameter identification, which was not evaluated here. Further simulation and experimental validation is required to establish the accuracy and fitness of this model for identifying bone material properties.


2020 ◽  
Vol 211 (3) ◽  
pp. 107556
Author(s):  
Nadja Fratzl-Zelman ◽  
Sonja Gamsjaeger ◽  
Stéphane Blouin ◽  
Roland Kocijan ◽  
Pia Plasenzotti ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document