material damping
Recently Published Documents


TOTAL DOCUMENTS

249
(FIVE YEARS 32)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 6 (1) ◽  
pp. 13
Author(s):  
Hauke Kröger ◽  
Stephan Mock ◽  
Christoph Greb ◽  
Thomas Gries

Hybridization of carbon fiber composites can increase the material damping of composite parts. However, there is little research on a direct comparison of different fiber materials—particularly for carbon fiber intraply-hybrid composites. Hence, the mechanical- and damping properties of different carbon fiber intraply hybrids are analyzed in this paper. Quasi unidirectional fabrics made of carbon, aramid, Vectran and cellulose fibers are produced, and their mechanical properties are analyzed. The material tests show an increased material damping due to the use of Vectran and aramid fibers, with a simultaneous reduction in strength and stiffness.


Author(s):  
Vladimir Sidorov ◽  
Elena Badina ◽  
Elena Detina

In this paper the problem of numerical simulation of composite bending elements dynamic considering internal (material) damping. For this purpose the nonlocal in time damping model, called damping with memory, is proposed as an alternative to the classic local Kelvin-Voigt model. Damping with memory makes damping forces not only dependent on the instant value of the strain rate, but also on the previous history of the vibration process. Since finite element analysis is the most common method of structural analysis, the nonlocal damping model is integrated into FEA algorithm. The FEA dynamic equilibrium equation is solved using the explicit scheme. The damping matrix was developed using the stationary full energy requirement. One-dimensional nonlocal in time model was implemented in MATLAB software package. The results of three-dimensional numerical simulation of the composite beam vibration obtained in SIMULIA Abaqus were used for model calibration. The obtained results were compared to the results based on classic Kelvin-Voight damping model.


2021 ◽  
Vol 2 (4) ◽  
pp. 956-975
Author(s):  
Marcel S. Prem ◽  
Michael Klanner ◽  
Katrin Ellermann

In order to analyze the dynamics of a structural problem accurately, a precise model of the structure, including an appropriate material description, is required. An important step within the modeling process is the correct determination of the model input parameters, e.g., loading conditions or material parameters. An accurate description of the damping characteristics is a complicated task, since many different effects have to be considered. An efficient approach to model the material damping is the introduction of fractional derivatives in the constitutive relations of the material, since only a small number of parameters is required to represent the real damping behavior. In this paper, a novel method to determine the damping parameters of viscoelastic materials described by the so-called fractional Zener material model is proposed. The damping parameters are estimated by matching the Frequency Response Functions (FRF) of a virtual model, describing a beam-like structure, with experimental vibration data. Since this process is generally time-consuming, a surrogate modeling technique, named Polynomial Chaos Expansion (PCE), is combined with a semi-analytical computational technique, called the Numerical Assembly Technique (NAT), to reduce the computational cost. The presented approach is applied to an artificial material with well defined parameters to show the accuracy and efficiency of the method. Additionally, vibration measurements are used to estimate the damping parameters of an aluminium rotor with low material damping, which can also be described by the fractional damping model.


2021 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Chung Ket Thein ◽  
Faruq Muhammad Foong

Triangular cantilever beams are often desired in piezoelectric vibration energy harvesting applications, as they result in a better performance due to the higher and more uniform stress they exhibit. However, the application of this cantilever geometry has not yet been explored for other transduction methods. In this study, the application of a triangular cantilever beam for a cantilevered electromagnetic vibration energy harvester was examined by analyzing its material damping and comparing it to a regular rectangular beam. The material damping of the harvester was predicted through finite element analysis using the critically damped stress method. Under the same beam volume or beam length, the triangular cantilever beam exhibited an approximately 7.1% lower material damping when compared to a rectangular cantilever beam. Further analysis shows that the triangular beam can also deliver a 21.7% higher power output than the rectangular beam.


Geotechnics ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 330-346
Author(s):  
Zhongze Xu ◽  
Yumeng Tao ◽  
Lizeth Hernandez

This paper illustrates two novel methods for computing the small-strain hysteretic material damping ratio, λmin, of soils from the cyclic torsional shear (TS) and computing the small-strain viscous material damping ratio, Dmin, from the free-vibration decay (FVD) testing. Both λmin and Dmin are challenging to measure, due to the significant level of ambient noise at small strains (<10−4%). A two-step method is proposed combining the Fourier Transform and a phase-based data fitting method for torsional shear testing, and this method can effectively eliminate the ambient noise at small strains. A Hilbert Transform-based method is proposed for the free-vibration decay testing in order to achieve a more accurate measurement of the viscous material damping ratio, D, at different strain levels, especially at small strains. The improved λmin and Dmin at small strains are compared to data available in the literature. The two novel methods are shown to be accurate in computing the small-strain damping ratios.


2021 ◽  
Author(s):  
Victor Manuel Taboada ◽  
Shuang Cindy Cao ◽  
Francisco Alonso Flores Lopez ◽  
Diego Cruz Roque ◽  
Procoro Barrera Nabor

Abstract Equations to calculate the modulus reduction curve (G/Gmax-γ) and material damping ratio curve (D-γ) of calcareous clay and clayey carbonate mud of the Bay of Campeche and Tabasco Coastline are developed. This was achieved using a database of 156 resonant column tests and 468 strain-controlled cyclic direct simple shear tests performed in clays with 10 % ≤ CaCO3 ≤90 %. The effects of carbonate content (CaCO3), mean effective confining pressure (σ′m), plasticity index (PI), and overconsolidation ratio (OCR) on the shape of the modulus reduction and material damping ratio curves are shown based on the available laboratory data and the equations developed to calculate these curves. It is shown that as CaCO3 increases, the normalized shear modulus (G/Gmax) curve tends to shift downward and the damping ratio (D) curve tends to shift upward; as σ′m and PI increase, the G/Gmax curve tends to shift upward and the damping ratio curve tends to shift downward; and the value of OCR has practically no effect on the position of the curves. The validation of the calculated values of G/Gmax and D shows the best predictions are found at low shear strains for G/Gmax and at large shear strains for D, falling within ± 25 % of the measured values, and shows that due to limitations in the model at large strains (γ &gt; 1 %) for G/Gmax and at low strains (γ &lt; 0.05 %) for D, the calculated values fall within ± 50 % of the measured values. The equations developed to calculate the curves of G/Gmax-γ and D-γ of calcareous clay and clayey carbonate mud are recommended for preliminary or perhaps even final seismic site response evaluations. However, considering the scatter of the data points around the curves, the equations should be used with caution, and parametric and sensitivity studies are strongly recommended to assess the importance of this scatter. In large critical projects, direct experimental determinations of G/Gmax and D for the soils of interest are suggested to be more appropriate.


2021 ◽  
Vol 263 (1) ◽  
pp. 5291-5300
Author(s):  
Tales Sofiste ◽  
Luís Godinho ◽  
Delfim Soares ◽  
Pedro Alves Costa

Ground-borne vibrations are an increasingly common problem in large cities due to its considerable disturbance in terms of human comfort and health. In this sense, construction operations stand as a significant source of vibrations and may be critical since construction sites are frequently adjacent to existing buildings. In the present work, vibrations induced by pile driving are studied. A time-domain finite element model is developed and a post-processing approach is proposed to simulate the material damping of the soil. This damping formulation stands as a simple and direct approximation of the material damping in the system. In order to do so, the numerical response is computed without material damping, which is introduced as a post-processing procedure. An explicit and highly efficient method is applied for the time integration of the equation of motion, considering an axisymmetric formulation. A numerical application is carried out and the obtained results are compared to previous numerical and in-situ measurements available in the literature, indicating a good agreement with previous studies.


Author(s):  
Vijay Gunasekaran ◽  
Jeyaraj Pitchaimani ◽  
Lenin Babu Mailan Chinnapandi

The current investigation presents the analytical investigation on free vibration and inherent material damping of boron-FRP plate, subjected to non-uniform uniaxial edge loads. Initially critical buckling load (Pcr) is obtained, then followed by free vibration response and inherent material damping values for corresponding modal indices of the FRP plate is calculated for different load fraction of non-uniform uniaxial edge loads. The buckling load and free vibration response are obtained by using strain energy method and Reddy's TSDT respectively. It is observed that the nature of load and aspect ratio influence the bucking, free vibration and inherent material damping behaviour of the fibre reinforced polymer plate significantly.


Sign in / Sign up

Export Citation Format

Share Document