stereo images
Recently Published Documents


TOTAL DOCUMENTS

809
(FIVE YEARS 137)

H-INDEX

30
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Z. A. M. Nazmi ◽  
◽  
Rostam Affendi Hamzah ◽  
M. N. Zarina ◽  
Z. Madiha ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
pp. 142
Author(s):  
Jiang Ye ◽  
Yuxuan Qiang ◽  
Rui Zhang ◽  
Xinguo Liu ◽  
Yixin Deng ◽  
...  

The lack of ground control points (GCPs) affects the elevation accuracy of digital surface models (DSMs) generated by optical satellite stereo images and limits the application of high-resolution DSMs. It is a feasible idea to use ICESat-2 (Ice, Cloud, and land Elevation Satellite-2) laser altimetry data to improve the elevation accuracy of optical stereo images, but it is necessary to accurately match the two types of data. This paper proposes a DSM registration strategy based on terrain similarity (BOTS), which integrates ICESat-2 laser altimetry data without GCPs and improves the DSM elevation accuracy generation from optical satellite stereo pairs. Under different terrain conditions, Worldview-2, SV-1, GF-7, and ZY-3 stereo pairs were used to verify the effectiveness of this method. The experimental results show that the BOTS method proposed in this paper is more robust when there are a large number of abnormal points in the ICESat-2 data or there is a large elevation gap between DSMs. After fusion of ICESat-2 data, the DSM elevation accuracy extracted from the satellite stereo pair is improved by 73~92%, and the root mean square error (RMSE) of Worldview-2 DSM reaches 0.71 m.


2021 ◽  
pp. 1-11
Author(s):  
Zhifan Wang ◽  
Tong Xin ◽  
Shidong Wang ◽  
Haofeng Zhang

 The ubiquitous availability of cost-effective cameras has rendered large scale collection of street view data a straightforward endeavour. Yet, the effective use of these data to assist autonomous driving remains a challenge, especially lack of exploration and exploitation of stereo images with abundant perceptible depth. In this paper, we propose a novel Depth-embedded Instance Segmentation Network (DISNet) which can effectively improve the performance of instance segmentation by incorporating the depth information of stereo images. The proposed network takes binocular images as input to observe the displacement of the object and estimate the corresponding depth perception without additional supervisions. Furthermore, we introduce a new module for computing the depth cost-volume, which can be integrated with the colour cost-volume to jointly capture useful disparities of stereo images. The shared-weights structure of Siamese Network is applied to learn the intrinsic information of stereo images while reducing the computational burden. Extensive experiments have been carried out on publicly available datasets (i.e., Cityscapes and KITTI), and the obtained results clearly demonstrate the superiority in segmenting instances with different depths.


2021 ◽  
Vol 13 (24) ◽  
pp. 5050
Author(s):  
Sheng He ◽  
Ruqin Zhou ◽  
Shenhong Li ◽  
San Jiang ◽  
Wanshou Jiang

As an essential task in remote sensing, disparity estimation of high-resolution stereo images is still confronted with intractable problems due to extremely complex scenes and dynamically changing disparities. Especially in areas containing texture-less regions, repetitive patterns, disparity discontinuities, and occlusions, stereo matching is difficult. Recently, convolutional neural networks have provided a new paradigm for disparity estimation, but it is difficult for current models to consider both accuracy and speed. This paper proposes a novel end-to-end network to overcome the aforementioned obstacles. The proposed network learns stereo matching at dual scales, in which the low one captures coarse-grained information while the high one captures fine-grained information, helpful for matching structures of different scales. Moreiver, we construct cost volumes from negative to positive values to make the network work well for both negative and nonnegative disparities since the disparity varies dramatically in remote sensing stereo images. A 3D encoder-decoder module formed by factorized 3D convolutions is introduced to adaptively learn cost aggregation, which is of high efficiency and able to alleviate the edge-fattening issue at disparity discontinuities and approximate the matching of occlusions. Besides, we use a refinement module that brings in shallow features as guidance to attain high-quality full-resolution disparity maps. The proposed network is compared with several typical models. Experimental results on a challenging dataset demonstrate that our network shows powerful learning and generalization abilities. It achieves convincing performance on both accuracy and efficiency, and improvements of stereo matching in these challenging areas are noteworthy.


2021 ◽  
Author(s):  
Justus Drogemuller ◽  
Carlos X. Garcia ◽  
Elena Gambaro ◽  
Michael Suppa ◽  
Jochen Steil ◽  
...  

2021 ◽  
Vol 13 (22) ◽  
pp. 4539
Author(s):  
Xuanqi Wang ◽  
Feng Wang ◽  
Yuming Xiang ◽  
Hongjian You

Epipolar images can improve the efficiency and accuracy of dense matching by restricting the search range of correspondences from 2-D to 1-D, which play an important role in 3-D reconstruction. As most of the satellite images in archives are incidental collections, which do not have rigorous stereo properties, in this paper, we propose a general framework to generate epipolar images for both in-track and cross-track stereo images. We first investigate the theoretical epipolar constraints of single-sensor and multi-sensor images and then introduce the proposed framework in detail. Considering large elevation changes in mountain areas, the publicly available digital elevation model (DEM) is applied to reduce the initial offsets of two stereo images. The left image is projected into the image coordinate system of the right image using the rational polynomial coefficients (RPCs). By dividing the raw images into several blocks, the epipolar images of each block are parallel generated through a robust feature matching method and fundamental matrix estimation, in which way, the horizontal disparity can be drastically reduced while maintaining negligible vertical disparity for epipolar blocks. Then, stereo matching using the epipolar blocks can be easily implemented and the forward intersection method is used to generate the digital surface model (DSM). Experimental results on several in-track and cross-track images, including optical-optical, SAR-SAR, and SAR-optical pairs, demonstrate the effectiveness of the proposed framework, which not only has obvious advantages in mountain areas with large elevation changes but also can generate high-quality epipolar images for flat areas. The generated epipolar images of a ZiYuan-3 pair in Songshan are further utilized to produce a high-precision DSM.


2021 ◽  
Author(s):  
Yi-Chou Chen ◽  
Chun-Hao Chao ◽  
Chang-Le Liu ◽  
Kuang-Tsu Shih ◽  
Homer H. Chen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document