cellular components
Recently Published Documents


TOTAL DOCUMENTS

1690
(FIVE YEARS 673)

H-INDEX

84
(FIVE YEARS 16)

Blood ◽  
2022 ◽  
Author(s):  
Evelien G.G. Sprenkeler ◽  
Anton T.J. Tool ◽  
Stefanie Henriet ◽  
Robin van Bruggen ◽  
Taco W. Kuijpers

Neutrophils are important effector cells in the host defense against invading micro-organisms. One of the mechanisms they employ to eliminate pathogens is the release of neutrophil extracellular traps (NETs). Although NET release and subsequent cell death known as NETosis have been intensively studied, the cellular components and factors determining or facilitating the formation of NETs remain incompletely understood. Using various actin polymerization and myosin II modulators on neutrophils from healthy individuals, we show that intact F-actin dynamics and myosin II function are essential for NET formation when induced by different stimuli, i.e. phorbol 12-myristate 13-acetate, monosodium urate crystals and Candida albicans. The role of actin polymerization in NET formation could not be explained by the lack of reactive oxygen species production or granule release, which were normal or enhanced under the given conditions. Neutrophils from patients with very rare inherited actin polymerization defects by either ARPC1B- or MKL1-deficiency also failed to show NETosis. We found that upon inhibition of actin dynamics there is a lack of translocation of NE to the nucleus, which may well explain the impaired NET formation. Collectively, our data illustrate the essential requirement of an intact and active actin polymerization process, as well as active myosin II to enable the release of nuclear DNA by neutrophils during NET formation.


2022 ◽  
pp. 106689692110642
Author(s):  
Rongying Li ◽  
Karan Saluja ◽  
Mei Lin ◽  
Zhihong Hu ◽  
Zhenjian Cai ◽  
...  

Sinonasal hamartomas are uncommon lesions of nasal and sinus cavities. Based on indigenous cellular components and characteristic histologic features, they are further classified into four entities: respiratory epithelial adenomatoid hamartoma (REAH), seromucinous hamartoma (SH), chondro-osseous and respiratory epithelial hamartoma (CORE), and nasal chondromesenchymal hamartoma (NCH). REAH, SH, and CORE are seen in adult patients, while NCH predominantly occurs in newborns and infants. Morphologically REAH and SH are composed of respiratory epithelium and seromucinous glands, CORE is related to REAH but with additional feature of chondroid and/or osseous tissue, and NCH is composed of chondroid and stromal elements but devoid of epithelial component. All four lesions can present as sinonasal mass lesions and with associated obstructive symptoms. Given the rarity of these lesions, diagnosis can be challenging, especially in unusual clinical scenario. In this study, we report six cases of sinonasal hamartoma, including one case of NCH, one case of CORE, two cases of SH, and two cases of REAH. All cases were from adult patients including four men and two women. We also review the literature of the clinical and pathologic features of these rare lesions.


Author(s):  
Dhanvanth J.S. Talluri ◽  
HuanTan Nguyen ◽  
Reza Avazmohammadi ◽  
Amir K. Miri

Abstract Extrusion three-dimensional (3D) bioprinting typically requires an ad-hoc trial-and-error optimization of the bioink composition towards enhanced resolution. The bioink solutions are solidified after leaving cone-shaped or cylindrical nozzles. The presence of bioink instability not only hampers the extrusion resolution but also affects the behavior of embedded cellular components. This is a key factor in selecting bioinks and bioprinting design parameters for well-established desktop and handheld bioprinters. In this work, we developed an analytical solution for the process of bioink deposition and compared its predictions against numerical simulations of the deposition. We estimated the onset of bioink instability as a function of bioink rheological properties and nozzle geometry. Both analytical and simulation results demonstrated that enhancing shear-thinning behavior of the bioink stabilizes the printing process whereas bioink shear-thickening behavior induces an opposite effect through extending the toe region of the deposition. The present study serves as a benchmark for detailed simulations of the extrusion process for optimal bioprinting.


eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Omar Peña-Ramos ◽  
Lucia Chiao ◽  
Xianghua Liu ◽  
Xiaomeng Yu ◽  
Tianyou Yao ◽  
...  

Autophagosomes are double-membrane intracellular vesicles that degrade protein aggregates, intracellular organelles, and other cellular components. During the development of the nematode Caenorhabditis elegans, many somatic and germ cells undergo apoptosis. These cells are engulfed and degraded by their neighboring cells. We discovered a novel role of autophagosomes in facilitating the degradation of apoptotic cells using a real-time imaging technique. Specifically, the double-membrane autophagosomes in engulfing cells are recruited to the surfaces of phagosomes containing apoptotic cells and subsequently fuse to phagosomes, allowing the inner vesicle to enter the phagosomal lumen. Mutants defective in the production of autophagosomes display significant defects in the degradation of apoptotic cells, demonstrating the importance of autophagosomes to this process. The signaling pathway led by the phagocytic receptor CED-1, the adaptor protein CED-6, and the large GTPase dynamin (DYN-1) promotes the recruitment of autophagosomes to phagosomes. Moreover, the subsequent fusion of autophagosomes with phagosomes requires the functions of the small GTPase RAB-7 and the HOPS complex components. Further observations suggest that autophagosomes provide apoptotic cell-degradation activities in addition to and in parallel of lysosomes. Our findings reveal that, unlike the single-membrane, LC3-associated phagocytosis (LAP) vesicles reported for mammalian phagocytes, the canonical double-membrane autophagosomes facilitate the clearance of C. elegans apoptotic cells. These findings add autophagosomes to the collection of intracellular organelles that contribute to phagosome maturation, identify novel crosstalk between the autophagy and phagosome maturation pathways, and discover the upstream signaling molecules that initiate this crosstalk.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Kun-Che Chang ◽  
Pei-Feng Liu ◽  
Chia-Hsuan Chang ◽  
Ying-Cheng Lin ◽  
Yen-Ju Chen ◽  
...  

AbstractOxidative stress is mainly caused by intracellular reactive oxygen species (ROS) production, which is highly associated with normal physiological homeostasis and the pathogenesis of diseases, particularly ocular diseases. Autophagy is a self-clearance pathway that removes oxidized cellular components and regulates cellular ROS levels. ROS can modulate autophagy activity through transcriptional and posttranslational mechanisms. Autophagy further triggers transcription factor activation and degrades impaired organelles and proteins to eliminate excessive ROS in cells. Thus, autophagy may play an antioxidant role in protecting ocular cells from oxidative stress. Nevertheless, excessive autophagy may cause autophagic cell death. In this review, we summarize the mechanisms of interaction between ROS and autophagy and their roles in the pathogenesis of several ocular diseases, including glaucoma, age-related macular degeneration (AMD), diabetic retinopathy (DR), and optic nerve atrophy, which are major causes of blindness. The autophagy modulators used to treat ocular diseases are further discussed. The findings of the studies reviewed here might shed light on the development and use of autophagy modulators for the future treatment of ocular diseases.


Cells ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 126
Author(s):  
Annalisa Bosi ◽  
Davide Banfi ◽  
Michela Bistoletti ◽  
Paola Moretto ◽  
Elisabetta Moro ◽  
...  

The commensal microbiota plays a fundamental role in maintaining host gut homeostasis by controlling several metabolic, neuronal and immune functions. Conversely, changes in the gut microenvironment may alter the saprophytic microbial community and function, hampering the positive relationship with the host. In this bidirectional interplay between the gut microbiota and the host, hyaluronan (HA), an unbranched glycosaminoglycan component of the extracellular matrix, has a multifaceted role. HA is fundamental for bacterial metabolism and influences bacterial adhesiveness to the mucosal layer and diffusion across the epithelial barrier. In the host, HA may be produced and distributed in different cellular components within the gut microenvironment, playing a role in the modulation of immune and neuronal responses. This review covers the more recent studies highlighting the relevance of HA as a putative modulator of the communication between luminal bacteria and the host gut neuro-immune axis both in health and disease conditions, such as inflammatory bowel disease and ischemia/reperfusion injury.


2021 ◽  
Vol 18 (3) ◽  
pp. 56-60
Author(s):  
Ji Won Park ◽  
Soo Wook Chae ◽  
Byung Min Yun

In recent decades, tissue engineering advances have led to more skin substitutes becoming available. Acellular dermal matrix, initially developed for use in the treatment of full-thickness burns, is made by removing the cellular components from the dermis collected from donated bodies or animals. This class of scaffold is used to replace skin and soft tissue deficiencies in a variety of fields, including breast reconstruction, abdominal wall reconstruction, and burn treatment. Herein, we provide a detailed review of the clinical applications of acellular dermal matrix.


2021 ◽  
Vol 17 (6) ◽  
pp. 818-828
Author(s):  
Sugathini Shunmugam ◽  
Nur Syamilah Rosli ◽  
Sugumaran Manickam ◽  
Nur Fatihah Mohd Yusoff ◽  
Noorjahan Banu Alitheen ◽  
...  

Luvunga crassifolia is an underutilized plant in the Citrus family. Other than brief morphological descriptions, there are no published reports on other identification features of this plant. Thus, the current study was aimed to investigate macroscopic and microscopic diagnostic features of L. crassifolia leaves, stems, and petioles. Macroscopic characterization, optimization of histological procedure, and histochemical analyses of differential stains were carried out on the leaves, stems, and petioles of L. crassifolia. The histological method was optimized by modifying the following parameters: number of fixation days, dehydration duration with degraded series of ethanol or butanol, clearing duration, and infiltration duration. After infiltration, embedding and sectioning of the tissues were performed. Histochemical analyses were carried out using differential stains to identify the cellular components in leaf, stem and, petiole tissue sections. This study showed that L. crassifolia leaves are amphistomatic. Pellucid dots were observed on both adaxial and abaxial leaf surfaces. Secretory cavities, xylem, phloem, and pericyclic fibers were found in the cross-sections of leaf, stem, and petiole. Calcium oxalates were present in the leaf and stem sections, while trichomes were detected in stem and petiole sections. The information obtained from this study will be helpful for the identification and future taxonomic-related studies of this plant species.


2021 ◽  
Vol 23 (1) ◽  
pp. 267
Author(s):  
Alessia Mariano ◽  
Irene Bigioni ◽  
Anna Scotto d’Abusco ◽  
Alessia Baseggio Conrado ◽  
Simonetta Maina ◽  
...  

Pheomelanin is a natural yellow-reddish sulfur-containing pigment derived from tyrosinase-catalyzed oxidation of tyrosine in presence of cysteine. Generally, the formation of melanin pigments is a protective response against the damaging effects of UV radiation in skin. However, pheomelanin, like other photosensitizing substances, can trigger, following exposure to UV radiation, photochemical reactions capable of modifying and damaging cellular components. The photoproperties of this natural pigment have been studied by analyzing pheomelanin effect on oxidation/nitration of tyrosine induced by UVB radiation at different pH values and in presence of iron ions. Photoproperties of pheomelanin can be modulated by various experimental conditions, ranging from the photoprotection to the triggering of potentially damaging photochemical reactions. The study of the photomodification of l-Tyrosine in the presence of the natural pigment pheomelanin has a special relevance, since this tyrosine oxidation/nitration pathway can potentially occur in vivo in tissues exposed to sunlight and play a role in the mechanisms of tissue damage induced by UV radiation.


Author(s):  
Olga Gómez ◽  
Giuliana Perini-Villanueva ◽  
Andrea Yuste ◽  
José Antonio Rodríguez-Navarro ◽  
Enric Poch ◽  
...  

Autophagy is a fine-tuned proteolytic pathway that moves dysfunctional/aged cellular components into the lysosomal compartment for degradation. Over the last 3 decades, global research has provided evidence for the protective role of autophagy in different brain cell components. Autophagic capacities decline with age, which contributes to the accumulation of obsolete/damaged organelles and proteins and, ultimately, leads to cellular aging in brain tissues. It is thus well-accepted that autophagy plays an essential role in brain homeostasis, and malfunction of this catabolic system is associated with major neurodegenerative disorders. Autophagy function can be modulated by different types of stress, including glycative stress. Glycative stress is defined as a cellular status with abnormal and accelerated accumulation of advanced glycation end products (AGEs). It occurs in hyperglycemic states, both through the consumption of high-sugar diets or under metabolic conditions such as diabetes. In recent years, glycative stress has gained attention for its adverse impact on brain pathology. This is because glycative stress stimulates insoluble, proteinaceous aggregation that is linked to the malfunction of different neuropathological proteins. Despite the emergence of new literature suggesting that autophagy plays a major role in fighting glycation-derived damage by removing cytosolic AGEs, excessive glycative stress might also negatively impact autophagic function. In this mini-review, we provide insight on the status of present knowledge regarding the role of autophagy in brain physiology and pathophysiology, with an emphasis on the cytoprotective role of autophagic function to ameliorate the adverse effects of glycation-derived damage in neurons, glia, and neuron-glia interactions.


Sign in / Sign up

Export Citation Format

Share Document