dynamical instabilities
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 25)

H-INDEX

31
(FIVE YEARS 6)

Author(s):  
Nicolas Sanchis-Gual ◽  
Carlos A R Herdeiro ◽  
Eugen Radu

Abstract We study the time evolution of spherical, excited (i.e. nodeful) boson star models. We consider a model including quartic self-interactions, controlled by a coupling Λ. Performing non-linear simulations of the Einstein-(complex)-Klein-Gordon system, using as initial data equilibrium boson stars solutions of that system, we assess the impact of Λ in the stability properties of the boson stars. In the absence of self-interactions (Λ = 0), we observe the known behaviour that the excited stars in the (candidate) stable branch decay to a non-excited star without a node; however, we show that for large enough values of the self-interactions coupling, these excited stars do not decay (up to timescales of about t ∼104). The stabilization of the excited states for large enough self-interactions is further supported by evidence that the nodeful states dynamically form through the gravitational cooling mechanism, starting from dilute initial data. Our results support the healing power (against dynamical instabilities) of self-interactions, recently unveiled in the context of the non-axisymmetric instabilities of spinning boson stars.


Mathematics ◽  
2021 ◽  
Vol 9 (23) ◽  
pp. 3090
Author(s):  
Pavel Konovalov ◽  
Daria Mangileva ◽  
Arsenii Dokuchaev ◽  
Olga Solovyova ◽  
Alexander V. Panfilov

Waves of electrical excitation rotating around an obstacle is one of the important mechanisms of dangerous cardiac arrhythmias occurring in the heart damaged by a post-infarction scar. Such a scar is also surrounded by the region of heterogeneity called a gray zone. In this paper, we perform the first comprehensive numerical study of various regimes of wave rotation around an obstacle surrounded by a gray zone. We use the TP06 cellular ionic model for human cardiomyocytes and study how the period and the pattern of wave rotation depend on the radius of a circular obstacle and the width of a circular gray zone. Our main conclusions are the following. The wave rotation regimes can be subdivided into three main classes: (1) functional rotation, (2) scar rotation and the newly found (3) gray zone rotation regimes. In the scar rotation regime, the wave rotates around the obstacle, while in the gray zone regime, the wave rotates around the gray zone. As a result, the period of rotation is determined by the perimeter of the scar, or gray zone perimeter correspondingly. The transition from the scar to the gray rotation regimes can be determined from the minimal period principle, formulated in this paper. We have also observed additional regimes associated with two types of dynamical instabilities which may affect or not affect the period of rotation. The results of this study can help to identify the factors determining the period of arrhythmias in post-infarction patients.


2021 ◽  
Vol 503 (3) ◽  
pp. 3677-3691
Author(s):  
Tanja Rindler-Daller ◽  
Katherine Freese ◽  
Richard H D Townsend ◽  
Luca Visinelli

ABSTRACT The first bright objects to form in the Universe might not have been ‘ordinary’ fusion-powered stars, but ‘dark stars’ (DSs) powered by the annihilation of dark matter (DM) in the form of weakly interacting massive particles (WIMPs). If discovered, DSs can provide a unique laboratory to test DM models. DSs are born with a mass of the order of M⊙ and may grow to a few million solar masses; in this work we investigate the properties of early DSs with masses up to $\sim \! 1000 \, \mathrm{ M}_\odot$, fueled by WIMPS weighing 100 GeV. We improve the previous implementation of the DM energy source into the stellar evolution code mesa. We show that the growth of DSs is not limited by astrophysical effects: DSs up to $\sim \!1000 \, \mathrm{ M}_{\odot }$ exhibit no dynamical instabilities; DSs are not subject to mass-loss driven by super-Eddington winds. We test the assumption of previous work that the injected energy per WIMP annihilation is constant throughout the star; relaxing this assumption does not change the properties of the DSs. Furthermore, we study DS pulsations, for the first time investigating non-adiabatic pulsation modes, using the linear pulsation code gyre. We find that acoustic modes in DSs of masses smaller than $\sim \! 200 \, \mathrm{ M}_\odot$ are excited by the κ − γ and γ mechanism in layers where hydrogen or helium is (partially) ionized. Moreover, we show that the mass-loss rates potentially induced by pulsations are negligible compared to the accretion rates.


Author(s):  
Julian Landaw ◽  
Xiaoping Yuan ◽  
Peng-Sheng Chen ◽  
Zhilin Qu

Spiral wave reentry as a mechanism of lethal ventricular arrhythmias has been widely demonstrated in animal experiments and recordings from human hearts. It has been shown that in structurally normal hearts, spiral waves are unstable, breaking up into multiple wavelets via dynamical instabilities. However, many of the second-generation action potential models give rise only to stable spiral waves, raising issues regarding the underlying mechanisms of spiral wave breakup. In this study, we carried out computer simulations of two-dimensional homogeneous tissues using five ventricular action potential models. We show that the transient outward potassium current (Ito), although it is not required, plays a key role in promoting spiral wave breakup in all five models. As the maximum conductance of Ito increases, it first promotes spiral wave breakup and then stabilizes the spiral waves. In the absence of Ito, speeding up the L-type calcium kinetics can prevent spiral wave breakup, however, with the same speedup kinetics, spiral wave breakup can be promoted by increasing Ito. Increasing Ito promotes single-cell dynamical instabilities, including action potential duration alternans and chaos, and increasing Ito further suppresses these action potential dynamics. These cellular properties agree with the observation that increasing Ito first promotes spiral wave breakup and then stabilizes spiral waves in tissue. Implications of our observations to spiral wave dynamics in the real hearts and action potential model improvements are discussed.


Author(s):  
Bogdan C Ciambur ◽  
Francesca Fragkoudi ◽  
Sergey Khoperskov ◽  
Paola Di Matteo ◽  
Françoise Combes

Abstract Boxy, peanut– or X–shaped “bulges” are observed in a large fraction of barred galaxies viewed in, or close to, edge-on projection, as well as in the Milky Way. They are the product of dynamical instabilities occurring in stellar bars, which cause the latter to buckle and thicken vertically. Recent studies have found nearby galaxies that harbour two such features arising at different radial scales, in a nested configuration. In this paper we explore the formation of such double peanuts, using a collisionless N–body simulation of a pure disc evolving in isolation within a live dark matter halo, which we analyse in a completely analogous way to observations of real galaxies. In the simulation we find a stable double configuration consisting of two X/peanut structures associated to the same galactic bar – rotating with the same pattern speed – but with different morphology, formation time, and evolution. The inner, conventional peanut-shaped structure forms early via the buckling of the bar, and experiences little evolution once it stabilises. This feature is consistent in terms of size, strength and morphology, with peanut structures observed in nearby galaxies. The outer structure, however, displays a strong X, or “bow-tie”, morphology. It forms just after the inner peanut, and gradually extends in time (within 1 to 1.5 Gyr) to almost the end of the bar, a radial scale where ansae occur. We conclude that, although both structures form, and are dynamically coupled to, the same bar, they are supported by inherently different mechanisms.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Igor Kudelin ◽  
Srikanth Sugavanam ◽  
Maria Chernysheva

Abstract Real-time observation of the emergence of coherent structures from noise via instabilities is of particular interest across disciplines ranging from biology to astrophysics. In the context of photonics, ultrafast fibre lasers provide an ideal test-bed for experimental observation of dynamical instabilities and generation of coherent structures of ultrashort pulses. Here we present experimentally obtained switch-on dynamics of counter-propagating ultrashort pulses in a bidirectional mode-locked fibre laser with delayed pulse formation via Q-switched and modulation instabilities, pronounced central wavelength drift, with the multiple-pulse formation. We define a localisation parameter using the round-trip resolved autocorrelation function to quantify the extent of the pulse formation, indicating an energy interchange between coherent features and background radiation. Furthermore, we report the formation of synchronised and unsynchronised dispersion waves. Our results reveal the complexity of the establishment of coherent features and their interaction with background radiation, contributing further towards the understanding of nonlinear systems in general.


2020 ◽  
Vol 499 (2) ◽  
pp. 1854-1869
Author(s):  
R F Maldonado ◽  
E Villaver ◽  
A J Mustill ◽  
M Chavez ◽  
E Bertone

ABSTRACT Between 25 and 50 ${{\ \rm per\ cent}}$ of white dwarfs (WD) present atmospheric pollution by metals, mainly by rocky material, which has been detected as gas/dust discs, or in the form of photometric transits in some WDs. Planets might be responsible for scattering minor bodies that can reach stargazing orbits, where the tidal forces of the WD can disrupt them and enhance the chances of debris to fall on to the WD surface. The planet–planet scattering process can be triggered by the stellar mass-loss during the post main-sequence (MS) evolution of planetary systems. In this work, we continue the exploration of the dynamical instabilities that can lead to WD pollution. In a previous work, we explored two-planet systems found around MS stars and here we extend the study to three-planet system architectures. We evolved 135 detected three-planet systems orbiting MS stars to the WD phase by scaling their orbital architectures in a way that their dynamical properties are preserved using the N-body integrator package mercury. We find that 100 simulations (8.6 ${{\ \rm per\ cent}}$) are dynamically active (having planet losses, orbit crossing, and scattering) on the WD phase, where low-mass planets (1–100 M⊕) tend to have instabilities in Gyr time-scales, while high-mass planets (>100 M⊕) decrease the dynamical events more rapidly as the WD ages. Besides, 19 simulations (1.6 ${{\ \rm per\ cent}}$) were found to have planets crossing the Roche radius of the WD, where 9 of them had planet–star collisions. Our three-planet simulations have a slight increase in percentage of simulations that may contribute to the WD pollution than the previous study involving two-planet systems and have shown that planet–planet scattering is responsible of sending planets close to the WD, where they may collide directly to the WD, become tidally disrupted or circularize their orbits, hence producing pollution on the WD atmosphere.


Sign in / Sign up

Export Citation Format

Share Document