stellar oscillations
Recently Published Documents


TOTAL DOCUMENTS

198
(FIVE YEARS 21)

H-INDEX

21
(FIVE YEARS 4)

2021 ◽  
Vol 257 (2) ◽  
pp. 53
Author(s):  
Mikkel N. Lund ◽  
Rasmus Handberg ◽  
Derek L. Buzasi ◽  
Lindsey Carboneau ◽  
Oliver J. Hall ◽  
...  

Abstract Data from the Transiting Exoplanet Survey Satellite (TESS) have produced of the order of one million light curves at cadences of 120 s and especially 1800 s for every ∼27 day observing sector during its two-year nominal mission. These data constitute a treasure trove for the study of stellar variability and exoplanets. However, to fully utilize the data in such studies a proper removal of systematic-noise sources must be performed before any analysis. The TESS Data for Asteroseismology group is tasked with providing analysis-ready data for the TESS Asteroseismic Science Consortium, which covers the full spectrum of stellar variability types, including stellar oscillations and pulsations, spanning a wide range of variability timescales and amplitudes. We present here the two current implementations for co-trending of raw photometric light curves from TESS, which cover different regimes of variability to serve the entire seismic community. We find performance in terms of commonly used noise statistics meets expectations and is applicable to a wide range of intrinsic variability types. Further, we find that the correction of light curves from a full sector of data can be completed well within a few days, meaning that when running in steady state our routines are able to process one sector before data from the next arrives. Our pipeline is open-source and all processed data will be made available on the websites of the TESS Asteroseismic Science Operations Center and the Mikulski Archive for Space Telescopes.


2021 ◽  
Vol 507 (4) ◽  
pp. 5747-5757
Author(s):  
Ana Brito ◽  
Ilídio Lopes

ABSTRACT All cool stars with outer convective zones have the potential to exhibit stochastically excited stellar oscillations. In this work, we explore the outer layers of stars less massive than the Sun. In particular, we have computed a set of stellar models ranging from 0.4 to 0.9 M⊙ with the aim at determining the impact on stellar oscillations of two physical processes occurring in the envelopes of these stars. Namely, the partial ionization of chemical elements and the electrostatic interactions between particles in the outer layers. We find that alongside with partial ionization, Coulomb effects also impact the acoustic oscillation spectrum. We confirm the well-known result that as the mass of a star decreases, the electrostatic interactions between particles become relevant. We found that their impact on stellar oscillations increases with decreasing mass, and for the stars with the lowest masses (M ≲ 0.6 M⊙), it is shown that Coulomb effects dominate over partial ionization processes producing a strong scatter on the acoustic modes. The influence of Coulomb interactions on the sound-speed gradient profile produces a strong oscillatory behaviour with diagnostic potential for the future.


2021 ◽  
Vol 104 (4) ◽  
Author(s):  
Miguel Bezares ◽  
Lotte ter Haar ◽  
Marco Crisostomi ◽  
Enrico Barausse ◽  
Carlos Palenzuela

Author(s):  
Zhao Guo

The study of stellar oscillations allows us to infer the properties of stellar interiors. Meanwhile, fundamental parameters such as mass and radius can be obtained by studying stars in binary systems. The synergy between binarity and asteroseismology can constrain the parameter space of stellar properties and facilitate the asteroseismic inference. On the other hand, binarity also introduces additional complexities such tides and mass transfer. From an observational perspective, we briefly review the recent advances in the study of tidal effects on stellar oscillations, focusing on upper main sequence stars (F-, A-, or OB- type). The effect can be roughly divided into two categories. The first one concerns the tidally excited oscillations (TEOs) in eccentric binaries where TEOs are mostly due to resonances between dynamical tides and gravity modes of the star. TEOs appear as orbital-harmonic oscillations on top of the eccentric ellipsoidal light curve variations (the “heartbeat” feature). The second category is regarding the self-excited oscillations perturbed by static tides in circularized and synchronized close binaries. It includes the tidal deformation of the propagation cavity and its effect on eigenfrequencies, eigenfunctions, and the pulsation alignment. We list binary systems that show these two types of tidal effect and summarize the orbital and pulsation observables. We also discuss the theoretical approaches used to model these tidal oscillations and relevant complications such as non-linear mode coupling and resonance locking. Further information can be extracted from the observations of these oscillations which will improve our understanding of tides. We also discuss the effect of mass transfer, the extreme result of tides, on stellar oscillations. We bring to the readers' attention: (1) oscillating stars undergoing mass accretion (A-, F-, and OB type pulsators and white dwarfs), for which the pulsation properties may be changed significantly by accretion; (2) post-mass transfer pulsators, which have undergone a stable or unstable Roche-Lobe overflow. These pulsators have great potential in probing detailed physical processes in stellar interiors and mass transfer, as well as in studying the binary star populations.


Author(s):  
Joseph Bretz ◽  
C A van Eysden ◽  
Bennett Link

Abstract The highly tangled magnetic field of a magnetar supports shear waves similar to Alfvén waves in an ordered magnetic field. Here we explore if torsional modes excited in the stellar interior and magnetosphere can explain the quasi-periodic oscillations (QPOs) observed in the tail of the giant flare of SGR 1900+14. We solve the initial value problem for a tangled magnetic field that couples interior shear waves to relativistic Alfvén shear waves in the magnetosphere. Assuming stellar oscillations arise from the sudden release of magnetic energy, we obtain constraints on the energetics and geometry of the process. If the flare energy is deposited initially inside the star, the wave energy propagates relatively slowly to the magnetosphere which is at odds with the observed rise time of the radiative event of ≲ 10 ms. Nor can the flare energy be deposited entirely outside the star, as most of the energy reflects off the stellar surface, giving surface oscillations of insufficient magnitude to produce detectable modulations of magnetospheric currents. Energy deposition in a volume that straddles the stellar surface gives agreement with the observed rise time and excites a range of modes with substantial amplitude at observed QPO frequencies. In general, localized energy deposition excites a broad range of modes that encompasses the observed QPOs, though many more modes are excited than the number of observed QPOs. If the flare energy is deposited axisymmetrically, as is possible for a certain class of MHD instabilities, the number of modes that is excited is considerably reduced.


New Astronomy ◽  
2021 ◽  
Vol 84 ◽  
pp. 101522
Author(s):  
Ki-Beom Kim ◽  
Heon-Young Chang

Author(s):  
Jason Jackiewicz

Many late-type stars across the Milky Way exhibit observable pulsations similar to our Sun that open up a window into stellar interiors. The NASA Kepler mission, a space-based photometric telescope, measured the micro-magnitude luminosity fluctuations caused by solar-like oscillations of tens of thousands of stars for almost 10 years. Detailed stellar structure, evolution, and oscillation theoretical work established in the decades before, such as predictions about mode mixing in the interior of red-giant stars, among many others, now had voluminous precision data against which it could be tested. The overwhelming result is the general validation of the theory of stellar oscillations as well as stellar-structure models; however, important gaps in our understanding of interior physics was also revealed by Kepler. For example, interior rotation, convection, and mixing processes are complex phenomena not fully captured by standard models. This review explores some of the important impacts Kepler observations of solar-like oscillations across the cool end of the H-R diagram has had on stellar astrophysics through the use of asteroseismology.


Author(s):  
Brett C Addison ◽  
Duncan J Wright ◽  
Belinda A Nicholson ◽  
Bryson Cale ◽  
Teo Mocnik ◽  
...  

Abstract We report the discovery of a warm sub-Saturn, TOI-257b (HD 19916b), based on data from NASA’s Transiting Exoplanet Survey Satellite (TESS). The transit signal was detected by TESS and confirmed to be of planetary origin based on radial velocity observations. An analysis of the TESS photometry, the Minerva-Australis, FEROS, and HARPS radial velocities, and the asteroseismic data of the stellar oscillations reveals that TOI-257b has a mass of MP = 0.138 ± 0.023 $\rm {M_J}$ (43.9 ± 7.3  M⊕), a radius of RP = 0.639 ± 0.013 $\rm {R_J}$ (7.16 ± 0.15  R⊕), bulk density of $0.65^{+0.12}_{-0.11}$ (cgs), and period $18.38818^{+0.00085}_{-0.00084}$ $\rm {days}$. TOI-257b orbits a bright (V = 7.612 mag) somewhat evolved late F-type star with M* = 1.390 ± 0.046 $\rm {M_{sun}}$, R* = 1.888 ± 0.033 $\rm {R_{sun}}$, Teff = 6075 ± 90 $\rm {K}$, and vsin i = 11.3 ± 0.5 km s−1. Additionally, we find hints for a second non-transiting sub-Saturn mass planet on a ∼71 day orbit using the radial velocity data. This system joins the ranks of a small number of exoplanet host stars (∼100) that have been characterized with asteroseismology. Warm sub-Saturns are rare in the known sample of exoplanets, and thus the discovery of TOI-257b is important in the context of future work studying the formation and migration history of similar planetary systems.


Author(s):  
Mia S Lundkvist ◽  
Hans-Günter Ludwig ◽  
Remo Collet ◽  
Thomas Straus

Abstract The granulation background seen in the power spectrum of a solar-like oscillator poses a serious challenge for extracting precise and detailed information about the stellar oscillations. Using a 3D hydrodynamical simulation of the Sun computed with CO5BOLD, we investigate various background models to infer, using a Bayesian methodology, which one provides the best fit to the background in the simulated power spectrum. We find that the best fit is provided by an expression including the overall power level and two characteristic frequencies, one with an exponent of 2 and one with a free exponent taking on a value around 6. We assess the impact of the 3D hydro-code on this result by repeating the analysis with a simulation from Stagger and find that the main conclusion is unchanged. However, the details of the resulting best fits differ slightly between the two codes, but we explain this difference by studying the effect of the spatial resolution and the duration of the simulation on the fit. Additionally, we look into the impact of adding white noise to the simulated time series as a simple way to mimic a real star. We find that, as long as the noise level is not too low, the results are consistent with the no-noise case.


Sign in / Sign up

Export Citation Format

Share Document