app processing
Recently Published Documents


TOTAL DOCUMENTS

440
(FIVE YEARS 117)

H-INDEX

46
(FIVE YEARS 6)

Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 129
Author(s):  
Anna Andrea Lauer ◽  
Heike Sabine Grimm ◽  
Birgit Apel ◽  
Nataliya Golobrodska ◽  
Lara Kruse ◽  
...  

Alzheimer’s disease (AD) is the most common form of dementia in the elderly population, affecting over 55 million people worldwide. Histopathological hallmarks of this multifactorial disease are an increased plaque burden and tangles in the brains of affected individuals. Several lines of evidence indicate that B12 hypovitaminosis is linked to AD. In this review, the biochemical pathways involved in AD that are affected by vitamin B12, focusing on APP processing, Aβ fibrillization, Aβ-induced oxidative damage as well as tau hyperphosphorylation and tau aggregation, are summarized. Besides the mechanistic link, an overview of clinical studies utilizing vitamin B supplementation are given, and a potential link between diseases and medication resulting in a reduced vitamin B12 level and AD are discussed. Besides the disease-mediated B12 hypovitaminosis, the reduction in vitamin B12 levels caused by an increasing change in dietary preferences has been gaining in relevance. In particular, vegetarian and vegan diets are associated with vitamin B12 deficiency, and therefore might have potential implications for AD. In conclusion, our review emphasizes the important role of vitamin B12 in AD, which is particularly important, as even in industrialized countries a large proportion of the population might not be sufficiently supplied with vitamin B12.


Cells ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 137
Author(s):  
Adelaide Fernandes ◽  
Cláudia Caldeira ◽  
Carolina Cunha ◽  
Elisabete Ferreiro ◽  
Ana Rita Vaz ◽  
...  

The prevalence of Alzheimer’s disease (AD), the most common cause of age-associated dementia, is estimated to increase over the next decades. Evidence suggests neuro-immune signaling deregulation and risk genes beyond the amyloid-β (Aβ) deposition in AD pathology. We examined the temporal profile of inflammatory mediators and microglia deactivation/activation in the brain cortex and hippocampus of 3xTg-AD mice at 3- and 9-month-old. We found upregulated APP processing, decreased expression of CD11b, CX3CR1, MFG-E8, TNF-α, IL-1β, MHC-II and C/EBP-α and increased miR-146a in both brain regions in 3-month-old 3xTG-AD mice, suggestive of a restrictive regulation. Enhanced TNF-α, IL-1β, IL-6, iNOS, SOCS1 and Arginase 1 were only present in the hippocampus of 9-month-old animals, though elevation of HMGB1 and reduction of miR-146a and miR-124 were common features in the hippocampus and cortex regions. miR-155 increased early in the cortex and later in both regions, supporting its potential as a biomarker. Candidate downregulated target genes by cortical miR-155 included Foxo3, Runx2 and CEBPβ at 3 months and Foxo3, Runx2 and Socs1 at 9 months, which are implicated in cell survival, but also in Aβ pathology and microglia/astrocyte dysfunction. Data provide new insights across AD state trajectory, with divergent microglia phenotypes and inflammatory-associated features, and identify critical targets for drug discovery and combinatorial therapies.


2021 ◽  
Author(s):  
Claudia Cannavo ◽  
Karen Cleverley ◽  
Cheryl Maduro ◽  
Paige Mumford ◽  
Dale Moulding ◽  
...  

Individuals who have Down syndrome (trisomy 21) are at greatly increased risk of developing Alzheimer’s disease – dementia. Alzheimer’s disease is characterised by the accumulation in the brain of amyloid-β plaques that are a product of amyloid precursor protein, encoded by the APP gene on chromosome 21. In Down syndrome the first site of amyloid-β accumulation is within endosomes and changes to endosome biology occur early in disease. Here we determine if primary mouse embryonic fibroblasts isolated from two mouse models of Down syndrome can be used to study endosome and APP cell biology. We report that in these cellular models of Down syndrome endosome number, size and APP processing are not altered, likely because APP is not dosage sensitive in these models, despite three copies of App .


2021 ◽  
Vol 20 ◽  
Author(s):  
Izabella B. Q. de Lima ◽  
Fabíola M. Ribeiro

: Alzheimer’s disease (AD) was first identified more than 100 years ago and, yet, aspects pertaining its origin as well as the mechanisms underlying disease progression are not well known. To this date, there is no therapeutic approach or disease modifying drug that could halt or at least delay disease progression. Until recently, glial cells were seen as secondary actors in brain homeostasis. Although this view was gradually refuted and the relevance of glial cells for the most diverse brain functions such as synaptic plasticity and neurotransmission was vastly proved, many aspects of its functioning as well as its role in pathological conditions remain poorly understood. Metabotropic glutamate receptors (mGluRs) in glial cells were shown to be involved in neuroinflammation and neurotoxicity. Besides its relevance for glial function, glutamatergic receptors are also central in the pathology of AD and recent studies have shown that glial mGluRs play a role in the establishment and progression of AD. Glial mGluRs influence AD-related alterations in Ca2+ signalling, APP processing and Aβ burden, as well as AD-related neurodegeneration. However, different types of mGluRs play different roles, depending on the cell type and brain region that is being analysed. Therefore, in this review we focus on the current understanding of glial mGluRs and their implication in AD, providing an insight for future therapeutics and identifying existing research gaps worth investigating.


2021 ◽  
Vol 22 (24) ◽  
pp. 13600
Author(s):  
Meewhi Kim ◽  
Ilya Bezprozvanny

Proteolytic processing of amyloid precursor protein (APP) plays a critical role in the pathogenesis of Alzheimer’s disease (AD). Sequential cleavage of APP by β and γ secretases leads to the generation of Aβ40 (non-amyloidogenic) and Aβ42 (amyloidogenic) peptides. Presenilin-1 (PS1) or presenilin-2 (PS2) play the role of a catalytic subunit of γ-secretase. Multiple familial AD (FAD) mutations in APP, PS1, or PS2 result in an increased Aβ42:Aβ40 ratio and the accumulation of toxic Aβ42 oligomers and plaques in patient brains. In this study, we perform molecular modeling of the APP complex with γ-secretase and analyze potential effects of FAD mutations in APP and PS1. We noticed that all FAD mutations in the APP transmembrane domain are predicted to cause an increase in the local disorder of its secondary structure. Based on structural analysis of known γ-secretase structures, we propose that APP can form a complex with γ-secretase in 2 potential conformations—M1 and M2. In conformation, the M1 transmembrane domain of APP forms a contact with the perimembrane domain that follows transmembrane domain 6 (TM6) in the PS1 structure. In conformation, the M2 transmembrane domain of APP forms a contact with transmembrane domain 7 (TM7) in the PS1 structure. By analyzing the effects of PS1-FAD mutations on the local protein disorder index, we discovered that these mutations increase the conformational flexibility of M2 and reduce the conformational flexibility of M1. Based on these results, we propose that M2 conformation, but not M1 conformation, of the γ secretase complex with APP leads to the amyloidogenic (Aβ42-generating) processing of APP. Our model predicts that APP processing in M1 conformation is favored by curved membranes, such as the membranes of early endosomes. In contrast, APP processing in M2 conformation is likely to be favored by relatively flat membranes, such as membranes of late endosomes and plasma membranes. These predictions are consistent with published biochemical analyses of APP processing at different subcellular locations. Our results also suggest that specific inhibitors of Aβ42 production could be potentially developed by selectively targeting the M2 conformation of the γ secretase complex with APP.


Author(s):  
Martina Stazi ◽  
Sandra Lehmann ◽  
M. Sadman Sakib ◽  
Tonatiuh Pena-Centeno ◽  
Luca Büschgens ◽  
...  

AbstractEpidemiological studies indicate that the consumption of caffeine, the most commonly ingested psychoactive substance found in coffee, tea or soft drinks, reduces the risk of developing Alzheimer’s disease (AD). Previous treatment studies with transgenic AD mouse models reported a reduced amyloid plaque load and an amelioration of behavioral deficits. It has been further shown that moderate doses of caffeine have the potential to attenuate the health burden in preclinical mouse models of a variety of brain disorders (reviewed in Cunha in J Neurochem 139:1019–1055, 2016). In the current study, we assessed whether long-term caffeine consumption affected hippocampal neuron loss and associated behavioral deficits in the Tg4-42 mouse model of AD. Treatment over a 4-month period reduced hippocampal neuron loss, rescued learning and memory deficits, and ameliorated impaired neurogenesis. Neuron-specific RNA sequencing analysis in the hippocampus revealed an altered expression profile distinguished by the up-regulation of genes linked to synaptic function and processes, and to neural progenitor proliferation. Treatment of 5xFAD mice, which develop prominent amyloid pathology, with the same paradigm also rescued behavioral deficits but did not affect extracellular amyloid-β (Aβ) levels or amyloid precursor protein (APP) processing. These findings challenge previous assumptions that caffeine is anti-amyloidogenic and indicate that the promotion of neurogenesis might play a role in its beneficial effects.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 983
Author(s):  
Xiaoling Liu ◽  
Yan Liu ◽  
Shangrong Ji

Alzheimer’s disease (AD) is a common neurodegenerative disease whose prevalence increases with age. An increasing number of findings suggest that abnormalities in the metabolism of amyloid precursor protein (APP), a single transmembrane aspartic protein that is cleaved by β- and γ-secretases to produce β-amyloid protein (Aβ), are a major pathological feature of AD. In recent years, a large number of studies have been conducted on the APP processing pathways and the role of secretion. This paper provides a summary of the involvement of secretases in the processing of APP and the potential drug targets that could provide new directions for AD therapy.


2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Viktoriya Zhuravleva ◽  
João Vaz-Silva ◽  
Mei Zhu ◽  
Patricia Gomes ◽  
Joana M. Silva ◽  
...  

AbstractChronic stress and elevated glucocorticoids (GCs), the major stress hormones, are risk factors for Alzheimer’s disease (AD) and promote AD pathomechanisms, including overproduction of toxic amyloid-β (Aβ) peptides and intraneuronal accumulation of hyperphosphorylated Tau protein. The latter is linked to downregulation of the small GTPase Rab35, which mediates Tau degradation via the endolysosomal pathway. Whether Rab35 is also involved in Aβ overproduction remains an open question. Here, we find that hippocampal Rab35 levels are decreased not only by stress/GC but also by aging, another AD risk factor. Moreover, we show that Rab35 negatively regulates Aβ production by sorting amyloid precursor protein (APP) and β-secretase (BACE1) out of the endosomal network, where they interact to produce Aβ. Interestingly, Rab35 coordinates distinct intracellular trafficking steps for BACE1 and APP, mediated by its effectors OCRL and ACAP2, respectively. Finally, we demonstrate that Rab35 overexpression prevents the amyloidogenic trafficking of APP and BACE1 induced by high GC levels. These studies identify Rab35 as a key regulator of APP processing and suggest that its downregulation may contribute to stress-related and AD-related amyloidogenesis.


Author(s):  
Meewhi Kim ◽  
Ilya Bezprozvanny

Proteolytic processing of amyloid precursor protein (APP) plays a critical role in pathogenesis of Azheimer’s disease (AD). Sequential cleavage of APP by β and γ secretases leads to generation of Aβ40 (non-amyloidogenic) and Aβ42 (amyloidogenic) peptides. Presenilin-1 (PS1) or presenilin-2 (PS2) pay a role of catalytic subunit of γ-secretase. Multiple familial AD (FAD) mutations in APP, PS1, or PS2 result in increased Aβ42:Aβ40 ratio and accumulation of toxic Aβ42 oligomers and plaques in patient brains. In this study we performed molecular modeling of APP complex with γ-secretase and analyzed potential effects of FAD mutations in APP and PS1. We noticed that all FAD mutations in APP transmembrane domain are predicted to cause an increase in the local disorder of its secondary structure. Based on structural analysis of known γ-secretase structures we proposed that APP can form a complex with γ-secretase in 2 potential conformations – M1 and M2. In conformation M1 transmembrane domain of APP forms a contact with perimembrane domain that follows the transmembrane domain 6 (TM6) in PS1 structure. In conformation M2 transmembrane domain of APP forms a contact with transmembrane domain 7 (TM7) in PS1 structure. By analyzing effects of PS1-FAD mutations on local protein disorder index, we discovered that these mutations increase conformational flexibility of M2 and reduce conformational flexibility of M1. Based on these results we proposed that M2 conformation, but not M1 conformation, of γ secretase complex with APP leads to amyloidogenic (Aβ42-generating) processing of APP. Our model predicts that APP processing in M1 conformation is favored by a curved membranes, such as membranes of early endosomes. In contrast, APP processing in M2 conformation is likely to be favored by a relatively flat memranes such as membranes of late endosomes and plasma membrane. These predictions are consistent with published biochemical analysis of APP processing at different subcellular locations. Our results suggest that specific inhibitors of Aβ42 production could be potentially developed by selectively targeting M2 conformation of γ secretase complex with APP.


Sign in / Sign up

Export Citation Format

Share Document