classical counterpart
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 53)

H-INDEX

14
(FIVE YEARS 3)

2021 ◽  
Author(s):  
China Kang

Abstract Experimental data sometimes fails to render the expected truth, such as high-speed bullets smashing into pieces on a water surface cannot verify the water’s hardness. By re-examining the essence underneath quantum phenomena and analyzing their relevance to universal classical theory, this study has thoroughly revealed the classical counterpart of spin. Subsequently, the equivalence between spin angular momentum (of energy or charge) and vorticity flux (of energy or charge) has also been unveiled, thus intuitively clarifying many abstruse physical concepts, like spin magnetic moment, virtual electron, relativistic time dilation, neutrino chirality, quark origin, and fundamental interactions (including gravitons). From now on, almost all quantum puzzles (e.g., wave-particle duality, quantum entanglement, Schrödinger’s cat) can be understood classically, just as prominent physicists such as Planck, Einstein, and Schrödinger longed for back then. This paper can be considered a blueprint of the Theory of Everything (TOE).


2021 ◽  
Author(s):  
China Kang

Abstract Experimental data sometimes fails to render the expected truth, such as high-speed bullets smashing into pieces on a water surface cannot verify the water’s hardness. By re-examining the essence underneath quantum phenomena and analyzing their relevance to universal classical theory, this study has thoroughly revealed the classical counterpart of spin. Subsequently, the equivalence between spin angular momentum (of energy or charge) and vorticity flux (of energy or charge) has also been unveiled, thus intuitively clarifying many abstruse physical concepts, like spin magnetic moment, virtual electron, relativistic time dilation, neutrino chirality, quark origin, and fundamental interactions (including gravitons). From now on, almost all quantum puzzles (e.g., wave-particle duality, quantum entanglement, Schrödinger’s cat) can be understood classically, just as prominent physicists such as Planck, Einstein, and Schrödinger longed for back then. This paper can be considered a blueprint of the Theory of Everything (TOE).


2021 ◽  
Author(s):  
China Kang

Abstract Experimental data sometimes fails to render the expected truth, such as high-speed bullets smashing into pieces on a water surface cannot verify the water’s hardness. By re-examining the essence underneath quantum phenomena and analyzing their relevance to universal classical theory, this study has thoroughly revealed the classical counterpart of spin. Subsequently, the equivalence between spin angular momentum (of energy or charge) and vorticity flux (of energy or charge) has also been unveiled, thus intuitively clarifying many abstruse physical concepts, like spin magnetic moment, virtual electron, relativistic time dilation, neutrino chirality, quark origin, and fundamental interactions (including gravitons). From now on, almost all quantum puzzles (e.g., wave-particle duality, quantum entanglement, Schrödinger’s cat) can be understood classically, just as prominent physicists such as Planck, Einstein, and Schrödinger longed for back then. This paper can be considered a blueprint of the Theory of Everything (TOE).


2021 ◽  
Author(s):  
China Kang

Abstract Experimental data sometimes fails to render the expected truth, such as high-speed bullets smashing into pieces on a water surface cannot verify the water’s hardness. By re-examining the essence underneath quantum phenomena and analyzing their relevance to universal classical theory, this study has thoroughly revealed the classical counterpart of spin. Subsequently, the equivalence between spin angular momentum (of energy or charge) and vorticity flux (of energy or charge) has also been unveiled, thus intuitively clarifying many abstruse physical concepts, like spin magnetic moment, virtual electron, relativistic time dilation, neutrino chirality, quark origin, and fundamental interactions (including gravitons). From now on, almost all quantum puzzles (e.g., wave-particle duality, quantum entanglement, Schrödinger’s cat) can be understood classically, just as prominent physicists such as Planck, Einstein, and Schrödinger longed for back then. This paper can be considered a blueprint of the Theory of Everything (TOE).


2021 ◽  
Author(s):  
China Kang

Abstract Experimental data sometimes fails to render the expected truth, such as high-speed bullets smashing into pieces on a water surface cannot verify the water's hardness. By re-examining the essence underneath quantum phenomena and analyzing their relevance to universal classical theory, this study has thoroughly revealed the classical counterpart of spin. From now on, almost all quantum concepts (e.g., wave particle duality, quantum entanglement, and magnetic moment anomaly) can be understood classically, just as prominent physicists such as Planck, Einstein, and Schrödinger longed for back then. This paper can be considered a blueprint of the Theory of Everything (TOE).


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Anshuman Dey ◽  
Aryeh Fortinsky

Abstract In this paper we explicitly carry out the perturbative renormalization of the $$ T\overline{T} $$ T T ¯ -deformed free massive Dirac fermion in two dimensions up to second order in the coupling constant. This is done by computing the two-to-two S-matrix using the LSZ reduction formula and canceling out the divergences by introducing counterterms. We demonstrate that the renormalized Lagrangian is unambiguously determined by demanding that it gives the correct S-matrix of a $$ T\overline{T} $$ T T ¯ -deformed integrable field theory. Remarkably, the renormalized Lagrangian is qualitatively very different from its classical counterpart.


2021 ◽  
Author(s):  
China Kang

Abstract Experimental data sometimes fails to render the expected truth, such as high-speed bullets smashing into pieces on a water surface cannot verify the water's hardness. By re-examining the essence underneath quantum phenomena and analyzing their relevance to universal classical theory, this study has thoroughly revealed the classical counterpart of spin. From now on, almost all quantum concepts (e.g., wave particle duality, quantum entanglement, and magnetic moment anomaly) can be understood classically, just as prominent physicists such as Planck, Einstein, and Schrödinger longed for back then. This paper can be considered a blueprint of the Theory of Everything (TOE).


2021 ◽  
Author(s):  
China Kang

Abstract Experimental data sometimes fails to render the expected truth, such as high-speed bullets smashing into pieces on a water surface cannot verify the water's hardness. By re-examining the essence underneath quantum phenomena and analyzing their relevance to universal classical theory, this study has thoroughly revealed the classical counterpart of spin. From now on, almost all quantum concepts (e.g., wave particle duality, quantum entanglement, and magnetic moment anomaly) can be understood classically, just as prominent physicists such as Planck, Einstein, and Schrödinger longed for back then.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 569
Author(s):  
Tamal Guha ◽  
Mir Alimuddin ◽  
Sumit Rout ◽  
Amit Mukherjee ◽  
Some Sankar Bhattacharya ◽  
...  

Sharing correlated random variables is a resource for a number of information theoretic tasks such as privacy amplification, simultaneous message passing, secret sharing and many more. In this article, we show that to establish such a resource called shared randomness, quantum systems provide an advantage over their classical counterpart. Precisely, we show that appropriate albeit fixed measurements on a shared two-qubit state can generate correlations which cannot be obtained from any possible state on two classical bits. In a resource theoretic set-up, this feature of quantum systems can be interpreted as an advantage in winning a two players co-operative game, which we call the `non-monopolize social subsidy' game. It turns out that the quantum states leading to the desired advantage must possess non-classicality in the form of quantum discord. On the other hand, while distributing such sources of shared randomness between two parties via noisy channels, quantum channels with zero capacity as well as with classical capacity strictly less than unity perform more efficiently than the perfect classical channel. Protocols presented here are noise-robust and hence should be realizable with state-of-the-art quantum devices.


Author(s):  
Vytautas Paškūnas

Abstract We prove some qualitative results about the p-adic Jacquet–Langlands correspondence defined by Scholze, in the $\operatorname {\mathrm {GL}}_2(\mathbb{Q}_p )$ residually reducible case, using a vanishing theorem proved by Judith Ludwig. In particular, we show that in the cases under consideration, the global p-adic Jacquet–Langlands correspondence can also deal with automorphic forms with principal series representations at p in a nontrivial way, unlike its classical counterpart.


Sign in / Sign up

Export Citation Format

Share Document