immunodeficient mice
Recently Published Documents


TOTAL DOCUMENTS

1393
(FIVE YEARS 281)

H-INDEX

88
(FIVE YEARS 9)

Nano Express ◽  
2022 ◽  
Author(s):  
Shun-ichi Eto ◽  
Kazuma Higashisaka ◽  
Aoi Koshida ◽  
Kenta Sato ◽  
Mao Ogura ◽  
...  

Abstract Due to their innovative functions, the use of nanoparticles in various industries has been expanding. However, a key concern is whether nanoparticles induce unexpected biological effects. Although many studies have focused on innate immunity, information on whether nanoparticles induce biological responses through effects on acquired immunity is sparse. Here, to assess the effects of amorphous silica nanoparticles on acquired immunity, we analyzed changes in acute toxicities after pretreatment with amorphous silica nanoparticles (50 nm in diameter; nSP50). Pretreatment with nSP50 biochemically and pathologically exacerbated nSP50-induced hepatic damage in immunocompetent mice. However, pretreatment with nSP50 did not exacerbate hepatic damage in immunodeficient mice. Consistent with this, the depletion of CD8+ cells with an anti-CD8 antibody in animals pretreated with nSP50 resulted in lower plasma levels of hepatic injury markers such as ALT and AST after an intravenous administration than treatment with an isotype-matched control antibody. Finally, stimulation of splenocytes promoted the release of IFN-γ in nSP50-pretreated mice regardless of the stimulator used. Moreover, the blockade of IFN-γ decreased plasma levels of ALT and AST levels in nSP50-pretreated mice. Collectively, these data show that nSP50-induced acquired immunity leads to exacerbation of hepatic damage through the activation of cytotoxic T lymphocytes.


Cancers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 399
Author(s):  
Mirja Nurmio ◽  
Babak Asadi-Azarbaijani ◽  
Mi Hou ◽  
Ronja Kiviö ◽  
Jorma Toppari ◽  
...  

Purpose and methods: To elucidate whether previous cancer treatment affects graft recovery and follicle numbers, morphology, and development in grafts, cryopreserved ovarian biopsies obtained from 18 cancer patients aged 1–24 years with and without exposure to chemotherapy were xenografted as 1 mm3 fragments to immunodeficient mice for 22 weeks with exogenous stimulation. Results: Graft recovery showed no association with chemotherapy exposure, pubertal stage, or leukemia contamination. Total follicle number per recovered graft varied between 0 and 1031 in the chemotherapy-exposed and between 0 and 502 in the non-chemotherapy-exposed group. Atretic follicles formed the largest proportion of the follicle pool in chemotherapy-exposed grafts. Increased atresia correlated with exposure to alkylating agents (mean ± SD 8866.2 ± 9316.3 mg/m2) but not with anthracyclines, pubertal stage, or leukemia contamination. Conclusion: The observation confirms the harmful effects of alkylating agents on ovarian tissue. Therapy at the median cumulative dose of 8866 mg/m2 leads to the decreased quality of cryopreserved ovarian follicles in children and young adults. 


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Guoliang Li ◽  
Shuai Ma ◽  
Quanyou Wu ◽  
Defeng Kong ◽  
Zhenrong Yang ◽  
...  

AbstractSignet ring cell carcinoma (SRCC) has specific oncogenesis and phenotypic and treatment resistance heterogeneity. Systemic therapies are often ineffective, and predictive biomarkers to guide treatment are urgently needed. Tumor organoids have recently emerged as an ideal model for drug testing and screening. Here, we report gastric organoids established from tumor tissues comprising four SRCCs and eight non-SRCCs. Tumor organoids demonstrated different growth characteristics and morphologies. Changes in the original tumor genome were maintained during long-term culture from whole-exome sequencing (WES) analysis. Immunohistochemistry and H&E staining showed that the tissue characteristics of the primary tumor could be recapitulated. In addition, organoid lines successfully formed tumors in immunodeficient mice and maintained tumorigenic character. Different responses to 5-fluorouracil, oxaliplatin, docetaxel and irinotecan treatment were observed in SRCC and non-SRCC organoids. These results demonstrate that gastric organoid drug models, including SRCC, were highly similar to the original tumors in phenotypic and genotypic profiling and could be as living biomarkers for drug response testing.


Author(s):  
Daniel A. Powell ◽  
Amy P. Hsu ◽  
Christine D. Butkiewicz ◽  
Hien T. Trinh ◽  
Jeffrey A. Frelinger ◽  
...  

Disseminated coccidioidomycosis (DCM), often a severe and refractory disease leading to poor outcomes, is a risk for people with certain primary immunodeficiencies (PID). Several DCM-associated PID (STAT4, STAT3, IFNγ, and Dectin-1) are modeled in mice. To determine if vaccination could provide these mice protection, mice with mutations in Stat4, Stat3, Ifngr1, Clec7a (Dectin-1), and Rag-1 (T- and B-cell deficient) knockout (KO) mice were vaccinated with the live, avirulent, Δcps1 vaccine strain and subsequently challenged intranasally with pathogenic Coccidioides posadasii Silveira strain. Two weeks post-infection, vaccinated mice of all strains except Rag-1 KO had significantly reduced lung and spleen fungal burdens (p<0.05) compared to unvaccinated control mice. Splenic dissemination was prevented in most vaccinated immunodeficient mice while all unvaccinated B6 mice and the Rag-1 KO mice displayed disseminated disease. The mitigation of DCM by Δcps1 vaccination in these mice suggests that it could also benefit humans with immunogenetic risks of severe disease.


2022 ◽  
Vol 18 (1) ◽  
Author(s):  
Chiao-Hsu Ke ◽  
Hirotaka Tomiyasu ◽  
Yu-Ling Lin ◽  
Wei-Hsiang Huang ◽  
Hsiao-Hsuan Huang ◽  
...  

Abstract Background Canine transmissible venereal tumours (CTVTs) can cross the major histocompatibility complex barrier to spread among dogs. In addition to the transmissibility within canids, CTVTs are also known as a suitable model for investigating the tumour–host immunity interaction because dogs live with humans and experience the same environmental risk factors for tumourigenesis. Moreover, outbred dogs are more appropriate than inbred mice models for simulating the diversity of human cancer development. This study built a new model of CTVTs, known as MCTVTs, to further probe the shaping effects of immune stress on tumour development. For xenotransplantation, CTVTs were first injected and developed in immunodeficient mice (NOD.CB17-Prkdcscid/NcrCrl), defined as XCTVTs. The XCTVTs harvested from NOD/SCID mice were then inoculated and grown in beagles and named mouse xenotransplantation of CTVTs (MCTVTs). Results After the inoculation of CTVTs and MCTVTs into immune-competent beagle dogs separately, MCTVTs grew faster and metastasized more frequently than CTVTs did. Gene expression profiles in CTVTs and MCTVTs were analysed by cDNA microarray to reveal that MCTVTs expressed many tumour-promoting genes involved in chronic inflammation, chemotaxis, extracellular space modification, NF-kappa B pathways, and focal adhesion. Furthermore, several well-known tumour-associated biomarkers which could predict tumour progression were overexpressed in MCTVTs. Conclusions This study demonstrated that defective host immunity can result in gene instability and enable transcriptome reprogramming within tumour cells. Fast tumour growth in beagle dogs and overexpression of tumour-associated biomarkers were found in a CTVT strain previously established in immunodeficient mice. In addition, dysregulated interaction of chronic inflammation, chemotaxis, and extracellular space modification were revealed to imply the possibly exacerbating mechanisms in the microenvironments of these tumours. In summary, this study offers a potential method to facilitate tumour progression and provide a niche for discovering tumour-associated biomarkers in cancer research.


2022 ◽  
Author(s):  
Shigeru Miyagawa ◽  
Satoshi Kainuma ◽  
Takuji Kawamura ◽  
Kota Suzuki ◽  
Yoshito Ito ◽  
...  

Background: Despite major therapeutic advances, heart failure remains a life-threatening disorder, with 26 million patients worldwide, causing more deaths than cancer as a non-communicable disease. Therefore, novel strategies for the treatment of heart failure continue to be an important clinical need. Based on preclinical studies, allogenic human-induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) patches have been proposed as a potential therapeutic candidate for heart failure. We report the implantation of allogeneic hiPSC-CM patches in a patient with ischemic cardiomyopathy (ClinicalTrials.gov, #jRCT2053190081). Methods: The patches were produced under clinical-grade conditions and displayed cardiogenic phenotypes and safety in vivo (severe immunodeficient mice) without any genetic mutations in cancer-related genes. The patches were then implanted via thoracotomy into the left ventricle epicardium of the patient under immunosuppressive agents. Results: Positron emission tomography and computed tomography confirmed the possible efficacy and did not detect tumorigenesis in either the heart or other organs; the clinical symptoms improved 6 months after surgery, without any major adverse events, suggesting that the patches were well-tolerated. Furthermore, changes in the wall motion in the transplanted site were recovered, suggesting a favorable prognosis and the potential tolerance to exercise. Conclusions: This study is the first report of a successful transplant of hiPSC-CMs for severe ischemic cardiomyopathy.


2021 ◽  
Author(s):  
Loes E. Wiersma ◽  
M. Cristina Avramut ◽  
Ellen Lievers ◽  
Ton J. Rabelink ◽  
Cathelijne W van den Berg

Abstract Background The generation of human induced pluripotent stem cells (hiPSCs) has opened a world of opportunities for stem cell-based therapies in regenerative medicine. Currently, several human kidney organoid protocols are available that generate organoids containing kidney structures. However, these kidney organoids are relatively small ranging up to 0.13 cm2 and therefore contain a small number of nephrons compared to an adult kidney, thus defying the exploration of future use for therapy. Method We have developed a scalable, easily accessible, and reproducible to increase the size of the organoid up to a nephron sheet of 2.5 cm2 up to a maximum of 12.6 cm2 containing a magnitude of nephrons. Results Confocal microscopy showed that the subunits of the nephrons remain evenly distributed throughout the entire sheet and that these tissue sheets can attain ~30,000-40,000 glomerular structures. Upon transplantation in immunodeficient mice, such nephron sheets became vascularized and matured. They also show reuptake of injected low-molecular mass dextran molecules in the tubular structures, indicative of glomerular filtration. Furthermore, we developed a protocol for the cryopreservation of intermediate mesoderm cells during the differentiation and demonstrate that these cells can be successfully thawed and recovered to create such tissue sheets. Conclusion The scalability of the procedures, and the ability to cryopreserve the cells during differentiation are important steps forward in the translation of these differentiation protocols to future clinical applications such as transplantable auxiliary kidney tissue.


Sign in / Sign up

Export Citation Format

Share Document