flexible cylinder
Recently Published Documents


TOTAL DOCUMENTS

212
(FIVE YEARS 32)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Vol 33 (12) ◽  
pp. 125115
Author(s):  
Zhicheng Wang ◽  
Ang Li ◽  
Baiheng Wu ◽  
Dixia Fan ◽  
Michael S. Triantafyllou ◽  
...  

2021 ◽  
Vol 241 ◽  
pp. 109981
Author(s):  
Yexuan Ma ◽  
Wanhai Xu ◽  
Huanan Ai ◽  
Yingying Wang ◽  
Kun Jia

2021 ◽  
Vol 928 ◽  
Author(s):  
R.L.G. Basso ◽  
Y. Hwang ◽  
G.R.S. Assi ◽  
S.J. Sherwin

This paper investigates the origin of flow-induced instabilities and their sensitivities in a flow over a rotationally flexible circular cylinder with a rigid splitter plate. A linear stability and sensitivity problem is formulated in the Eulerian frame by considering the geometric nonlinearity arising from the rotational motion of the cylinder which is not present in the stationary or purely translating stability methodology. This nonlinearity needs careful and consistent treatment in the linearised problem particularly when considering the Eulerian frame or reference adopted in this study that is not so widely considered. Two types of instabilities arising from the fluid–structure interaction are found. The first type of instabilities is the stationary symmetry breaking mode, which was well reported in previous studies. This instability exhibits a strong correlation with the length of the recirculation zone. A detailed analysis of the instability mode and its sensitivity reveals the importance of the flow near the tip region of the plate for the generation and control of this instability mode. The second type is an oscillatory torsional flapping mode, which has not been well reported. This instability typically emerges when the length of the splitter plate is sufficiently long. Unlike the symmetry breaking mode, it is not so closely correlated with the length of the recirculation zone. The sensitivity analysis however also reveals the crucial role played by the flow near the tip region in this instability. Finally, it is found that many physical features of this instability are reminiscent of those of the flapping (or flutter instability) observed in a flow over a flexible plate or a flag, suggesting that these instabilities share the same physical origin.


2021 ◽  
Vol 927 ◽  
Author(s):  
Banafsheh Seyed-Aghazadeh ◽  
Bridget Benner ◽  
Xhino Gjokollari ◽  
Yahya Modarres-Sadeghi

Vortex-induced vibration of a curved flexible cylinder placed in the test section of a recirculating water tunnel and fixed at both ends is studied experimentally. Both the concave and the convex orientations (with respect to the incoming flow direction) are considered. The cylinder was hung by its own weight with a dimensionless radius of curvature of $R/D=66$ , and a low mass ratio of $m^{*} = 3.6$ . A high-speed imaging technique was employed to record the oscillations of the cylinder in the cross-flow direction for a reduced velocity range of $U^{*} = 3.7 - 48.4$ , corresponding to a Reynolds number range of $Re= 165 - 2146$ . Mono- and multi-frequency responses as well as transition from low-mode-number to high-mode-number oscillations were observed. Regardless of the type of curvature, both odd and even mode shapes were excited in the cross-flow directions. However, the response of the system, in terms of the excited modes, amplitudes and frequencies of the oscillations, was observed to be sensitive to the direction of the curvature (i.e. concave vs convex), in particular at higher reduced velocities, where mode transition occurred. Hydrogen bubble flow visualization exhibited highly three-dimensional vortex shedding patterns in the wake of the cylinder, where there existed spatial and temporal evolution of the vortex shedding modes along the length of the cylinder. The time-varying intermittent vortex shedding in the wake of the cylinder was linked to the spanwise travelling wave behaviour of the vortex-induced vibration response. The observed spatially altering wake corresponded to the multi-modal excitation and mode transition along the length of the cylinder.


Author(s):  
Diego George Gundersen ◽  
Kenneth Thor Christensen ◽  
Gianluca Blois

Most modeling studies investigating the flow dynamics in vegetation canopies are limited to rigid models as proxies for vegetation elements. However, most canopies embody some degree of structural flexibility, resulting in aeroelastic mechanisms coupling the motion of the vegetation with the surrounding flow. Studies addressing flexible canopies typically quantify either the flow or the plant motion independently, thus missing the instantaneous coupling between turbulent stresses and structural deformations. Few experiments have been devoted to measuring both quantities simultaneously. Okamoto and Nezu (2009) utilized a combined PIV-PTV technique to capture both flow and canopy motion. However, only the motion of the stem tips was captured, as opposed to the deformation of the entire stem. Py et al. (2006) employed digital image correlation (DIC) to quantify the motion of crop canopies using in-field images. However, the wind itself was not measured across the domain. The present work presents an experimental technique that can be utilized to study the flow–structure interaction in flexible canopies, and that could be extended to other flexible and/or moving objects. High-speed PIV data of the flow surrounding an idealized canopy element, consisting of a flexible cylinder, together with the corresponding displacement field throughout the cylinder were simultaneously obtained combining fluorescent imaging and refractive index matching (RIM).


Author(s):  
Daniel P. Vieira ◽  
Guilherme R. Franzini ◽  
Fredi Cenci ◽  
Andre Fujarra

Abstract An experimental setup was built to investigate the Vortex-Induced Vibration (VIV) phenomenon on yawed and inclined flexible cylinders, in which five yaw angles θ = 0°, 10°, 20°, 30° and 45° and five azimuth angles ß = 0°, 45°, 90°, 135°, and 180° were combined. The experiments were carried out in a towing tank facility at Reynolds numbers from 1800 to 18000, comprising vibrations up to the eighth natural mode. Time histories of displacements were recorded using a submerged optical system that tracks 17 reflective targets. A modal decomposition scheme based on Galerkin's method was applied, aiming multimodal behavior investigations. Such an approach allowed the analysis of the modal amplitude throughout time, revealing interesting results for such a class of VIV tests. The flexible cylinder total response is generally a combination of two or more modes. Only for azimuths 0°, 90°, and 180°, a unimodal response was observed for the two first lock-in regimes. The frequency response showed that, when the response was multimodal, non-dominant modes can follow the vibration frequency of the dominant one. Assuming a priori the Independence Principle (IP) valid to define the reduced velocities (Vr), it was observed that the resonance region was restricted to 3 <= Vr <= 8 for the tested cases, indicating that the IP can be at least partially applied for flexible structures. As the literature scarcely explores the simultaneous yawed and inclined configurations, the present work may contribute to further code validation and improvements regarding the design of slender offshore structures.


Fluids ◽  
2021 ◽  
Vol 6 (7) ◽  
pp. 238
Author(s):  
Sharul Sham Dol ◽  
Tshun Howe Yong ◽  
Hiang Bin Chan ◽  
Siaw Khur Wee ◽  
Shaharin Anwar Sulaiman

A flexible protruding surface was employed as the flow disturbance to promote turbulence at the area of interest. An ultrasonic velocity profiler, UVP technique, was used to study the mean and fluctuating flow properties in the near wake of the rigid and flexible protruding surface in a water tunnel. The polymer based, ethylene-vinyl acetate (EVA) with an aspect ratio of AR = 10, 12, 14, 16 was used as the flexible circular cylinder, and submerged in a flow at Re = 4000, 6000 and 8000. The motion of the cylinder altered the fluid flow significantly. As a means to quantify turbulence, the wakes regions and production terms were analyzed. In general, the flexible cylinders show better capability in augmenting the turbulence than the rigid cylinder. The results show that the turbulence production term generated by the flexible cylinder is higher than that of rigid cylinder. The localized maximum shear production values have increased significantly from 131%, 203% and 94% against their rigid counterparts of AR = 16 at the Re = 4000, 6000 and 8000, respectively. The performance of turbulence enhancement depends heavily on the motion of the cylinder. The findings suggest that the turbulence enhancement was due to the oscillation of the flexible cylinder. The results have concluded that the flexible cylinder is a better turbulence generator than the rigid cylinder, thus improving the mixing of fluid through augmented turbulent flow.


2021 ◽  
Vol 33 (6) ◽  
pp. 065104
Author(s):  
Ke Lin ◽  
Jiasong Wang ◽  
Dixia Fan ◽  
Michael S. Triantafyllou

Sign in / Sign up

Export Citation Format

Share Document