equine influenza virus
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 40)

H-INDEX

30
(FIVE YEARS 3)

2023 ◽  
Vol 83 ◽  
Author(s):  
A. Khan ◽  
M. H. Mushtaq ◽  
J. Muhammad ◽  
B. Ahmed ◽  
E. A. Khan ◽  
...  

Abstract There are different opinions around the World regarding the zoonotic capability of H3N8 equine influenza viruses. In this report, we have tried to summarize the findings of different research and review articles from Chinese, English, and Mongolian Scientific Literature reporting the evidence for equine influenza virus infections in human beings. Different search engines i.e. CNKI, PubMed, ProQuest, Chongqing Database, Mongol Med, and Web of Knowledge yielded 926 articles, of which 32 articles met the inclusion criteria for this review. Analyzing the epidemiological and Phylogenetic data from these articles, we found a considerable experimental and observational evidence of H3N8 equine influenza viruses infecting human being in different parts of the World in the past. Recently published articles from Pakistan and China have highlighted the emerging threat and capability of equine influenza viruses for an epidemic in human beings in future. In this review article we have summarized the salient scientific reports published on the epidemiology of equine influenza viruses and their zoonotic aspect. Additionally, several recent developments in the start of 21st century, including the transmission and establishment of equine influenza viruses in different animal species i.e. camels and dogs, and presumed encephalopathy associated to influenza viruses in horses, have documented the unpredictable nature of equine influenza viruses. In sum up, several reports has highlighted the unpredictable nature of H3N8 EIVs highlighting the need of continuous surveillance for H3N8 in equines and humans in contact with them for novel and threatening mutations.


2021 ◽  
Vol 17 (12) ◽  
pp. e1010174
Author(s):  
Julien A. R. Amat ◽  
Veronica Patton ◽  
Caroline Chauché ◽  
Daniel Goldfarb ◽  
Joanna Crispell ◽  
...  

The mechanisms and consequences of genome evolution on viral fitness following host shifts are poorly understood. In addition, viral fitness -the ability of an organism to reproduce and survive- is multifactorial and thus difficult to quantify. Influenza A viruses (IAVs) circulate broadly among wild birds and have jumped into and become endemic in multiple mammalian hosts, including humans, pigs, dogs, seals, and horses. H3N8 equine influenza virus (EIV) is an endemic virus of horses that originated in birds and has been circulating uninterruptedly in equine populations since the early 1960s. Here, we used EIV to quantify changes in infection phenotype associated to viral fitness due to genome-wide changes acquired during long-term adaptation. We performed experimental infections of two mammalian cell lines and equine tracheal explants using the earliest H3N8 EIV isolated (A/equine/Uruguay/63 [EIV/63]), and A/equine/Ohio/2003 (EIV/2003), a monophyletic descendant of EIV/63 isolated 40 years after the emergence of H3N8 EIV. We show that EIV/2003 exhibits increased resistance to interferon, enhanced viral replication, and a more efficient cell-to-cell spread in cells and tissues. Transcriptomics analyses revealed virus-specific responses to each virus, mainly affecting host immunity and inflammation. Image analyses of infected equine respiratory explants showed that despite replicating at higher levels and spreading over larger areas of the respiratory epithelium, EIV/2003 induced milder lesions compared to EIV/63, suggesting that adaptation led to reduced tissue pathogenicity. Our results reveal previously unknown links between virus genotype and the host response to infection, providing new insights on the relationship between virus evolution and fitness.


Viruses ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2519
Author(s):  
Christoforos Rozario ◽  
Luis Martínez-Sobrido ◽  
Henry J. McSorley ◽  
Caroline Chauché

Influenza A viruses (IAVs) are important respiratory pathogens of horses and humans. Infected individuals develop typical respiratory disorders associated with the death of airway epithelial cells (AECs) in infected areas. Virulence and risk of secondary bacterial infections vary among IAV strains. The IAV non-structural proteins, NS1, PB1-F2, and PA-X are important virulence factors controlling AEC death and host immune responses to viral and bacterial infection. Polymorphism in these proteins impacts their function. Evidence from human and mouse studies indicates that upon IAV infection, the manner of AEC death impacts disease severity. Indeed, while apoptosis is considered anti-inflammatory, necrosis is thought to cause pulmonary damage with the release of damage-associated molecular patterns (DAMPs), such as interleukin-33 (IL-33). IL-33 is a potent inflammatory mediator released by necrotic cells, playing a crucial role in anti-viral and anti-bacterial immunity. Here, we discuss studies in human and murine models which investigate how viral determinants and host immune responses control AEC death and subsequent lung IL-33 release, impacting IAV disease severity. Confirming such data in horses and improving our understanding of early immunologic responses initiated by AEC death during IAV infection will better inform the development of novel therapeutic or vaccine strategies designed to protect life-long lung health in horses and humans, following a One Health approach.


Animals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 3006
Author(s):  
Nicola Pusterla ◽  
Kaitlyn James ◽  
Samantha Barnum ◽  
Eric Delwart

Three newly identified equine parvoviruses (equine parvovirus hepatitis (EqPV-H), equine parvovirus CSF (EqPV-CSF) and equine copivirus (Eqcopivirus)) have recently been discovered in horses with respiratory signs. However, the clinical impact of these three equine parvoviruses has yet to be determined. Nasal fluid samples and blood from 667 equids with acute onset of fever and respiratory signs submitted to a diagnostic laboratory were analyzed for the presence of common equine respiratory pathogens (equine influenza virus, equine herpesvirus-1/-4, equine rhinitis A and B virus, S. equi subspecies equi) as well as EqPV-H, EqPV-CSF and Eqcopivirus by qPCR. An additional 87 clinically healthy horses served as controls. One hundred and seventeen sick horses tested qPCR-positive for at least one of the three parvoviruses. Co-infections with common respiratory pathogens and parvoviruses were seen in 39 sick equids. All 87 clinically healthy horses tested qPCR-negative for all tested common respiratory pathogens and 10 healthy horses tested qPCR-positive for one of the equine parvoviruses. When the frequency of detection for EqPV-H, EqPV-CSF and Eqcopivirus of equids with respiratory signs was compared to that of clinically healthy horses, the difference was not statistically significant (p > 0.05), suggesting that the three recently identified equine parvoviruses do not contribute to the clinical picture of equids with respiratory disease.


Sign in / Sign up

Export Citation Format

Share Document