aqp4 expression
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 39)

H-INDEX

22
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Felix Deffner ◽  
Corinna Gleiser ◽  
Ulrich Mattheus ◽  
Andreas Wagner ◽  
Peter H Neckel ◽  
...  

Abstract The choroid plexus (CP) consists of specialized ependymal cells and underlying blood vessels and stroma producing the bulk of the cerebrospinal fluid (CSF). CP epithelial cells are considered the site of the internal blood-cerebrospinal fluid barrier, show epithelial characteristics (basal lamina, tight junctions), and express aquaporin-1 (AQP1) apically. In this study, we analyzed the expression of aquaporins in the human CP using immunofluorescence and qPCR. As previously reported, AQP1 was expressed apically in CP epithelial cells. Surprisingly, and previously unknown, many cells in the CP epithelium were also positive for aquaporin-4 (AQP4), normally restricted to ventricle-lining ependymal cells and astrocytes in the brain. Expression of AQP1 and AQP4 was found in the CP of all eight body donors investigated (3 males, 5 females; age 74-91). These results were confirmed by qPCR, and by electron microscopy detecting orthogonal arrays of particles. To find out whether AQP4 expression correlated with the expression pattern of relevant transport-related proteins we also investigated expression of NKCC1, and Na/K-ATPase. Immunostaining with NKCC1 was similar to AQP1 and revealed no particular pattern related to AQP4. Co-staining of AQP4 and Na/K-ATPase indicated a trend for an inverse correlation of their expression. We hypothesized that AQP4 expression in the CP was caused by age-related changes. To address this, we investigated mouse brains from young (2 months), adult (12 months) and old (30 months) mice. We found a significant increase of AQP4 on the mRNA level in old mice compared to young and adult animals. Taken together, we provide evidence for AQP4 expression in the CP of the aging brain which likely contributes to the water flow through the CP epithelium and CSF production. In two alternative hypotheses, we discuss this as a beneficial compensatory, or a detrimental mechanism influencing the previously observed CSF changes during aging.


2021 ◽  
Author(s):  
Akiko Imaizumi ◽  
Takayuki Obata ◽  
Jeff Kershaw ◽  
Yasuhiko Tachibana ◽  
Yoichiro Abe ◽  
...  

Purpose: The purpose of this study was to compare parameter estimates for the 2-compartment (2Comp) and diffusion kurtosis imaging (DKm) models obtained from diffusion-weighted imaging (DWI) of aquaporin-4 (AQP4) expression-controlled cells, and to look for biomarkers that indicate differences in the cell membrane water permeability. Methods: DWI was performed on AQP4-expressing and non-expressing cells and the signal was analyzed with the 2Comp and DKm models. For the 2Comp model, the diffusion coefficients (Df, Ds) and volume fractions (Ff, Fs, Ff=1-Fs) of the fast and slow compartments were estimated. For the DKm model, estimates of the diffusion kurtosis (K) and corrected diffusion coefficient (D) were obtained. Results: For the 2Comp model, Ds and Fs showed clear differences between AQP4-expressing and non-expressing cells. Fs was also sensitive to cell density. There was no clear relationship with the cell type for the DKm parameters. Conclusions: Changes to cell membrane water permeability due to AQP4 expression affected DWI of cell suspensions. For the 2Comp and DKm models, Ds was the parameter most sensitive to differences in AQP4 expression.


Author(s):  
Jinying Yang ◽  
Shengjun Yu ◽  
Guanglan Zhang ◽  
Zheng Zheng ◽  
Ping Li ◽  
...  

Abstract Despite aquaporin water channels (AQPs) play a critical role in maintaining water homeostasis in female reproductive tract and prompt a gradual increase in water content in cervical edema as pregnancy progressed, their relationship with macrophage infiltration and collagen content in human cervical remodeling need to be further investigated. This is the first study to examine the expression and localization of AQP3, AQP4, AQP5, AQP8 and macrophages simultaneously in human cervical ripening. The immunoreactivity of these AQPs was 2.6 to 6-fold higher on gestational weeks 26 (GD26W) than that on GD6W and GD15W, but AQP4 expression on GD39W dropped a similar extent on GD15W, other AQPs continued to rise on GD39W. The AQP3, AQP4 and AQP5 intensity seemed more abundant in cervical stroma than in the perivascular area on GD26W; the distribution of AQP3, AQP5 and AQP8 in cervical stroma was equivalent to that in the perivascular area on GD39W. Macrophage numbers were 1.7-fold higher in subepithelium region and 3.0-fold higher in center area on GD26W than that on GD15W; such numbers remained elevated on GD39W. The electron micrographs showed that cervical extensibility increased significantly on GD26W and GD39W accompanied with increased macrophage infiltration, cervical water content and much more space among collagen fibers. These findings suggest that the upregulation of AQPs expression in human cervix is closely related to enhanced macrophage infiltration during pregnancy; there may be a positive feedback mechanism between them to lead the increase of water content and the degradation of collagen.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258165
Author(s):  
Laura Hiraldo-González ◽  
José Luis Trillo-Contreras ◽  
Pablo García-Miranda ◽  
Rocío Pineda-Sánchez ◽  
Reposo Ramírez-Lorca ◽  
...  

Brain aquaporin 1 (AQP1) and AQP4 are involved in cerebrospinal fluid (CSF) homeostasis and might participate in the origin of hydrocephalus. Studies have shown alterations of perivascular AQP4 expression in idiopathic normal pressure hydrocephalus (iNPH) and Alzheimer’s disease (AD). Due to the overlapping of clinical signs between iNPH and certain neurological conditions, mainly AD, specific biomarkers might improve the diagnostic accuracy for iNPH. The goal of the present study was to analyze and quantify the presence of AQP1 and AQP4 in the CSF of patients with iNPH and AD to determine whether these proteins can be used as biomarkers of iNPH. We examined AQP1 and AQP4 protein levels in the CSF of 179 participants (88 women) classified into 5 groups: possible iNPH (81 participants), hydrocephalus associated with other neurological disorders (13 participants), AD (41 participants), non-AD dementia (32 participants) and healthy controls (12 participants). We recorded each participant’s demographic and clinical variables and indicated, when available in the clinical history, the record of cardiovascular and respiratory complications. An ELISA showed virtually no AQP content in the CSF. Information on the vascular risk factors (available for 61 patients) confirmed some type of vascular risk factor in 86% of the patients with possible iNPH and 58% of the patients with AD. In conclusion, the ELISA analysis showed insufficient sensitivity to detect the presence of AQP1 and AQP4 in CSF, ruling out the possible use of these proteins as biomarkers for diagnosing iNPH.


2021 ◽  
Vol 22 (18) ◽  
pp. 9745
Author(s):  
José Luis Trillo-Contreras ◽  
Juan José Toledo-Aral ◽  
Javier Villadiego ◽  
Miriam Echevarría

Aquaporin-4 (AQP4) is the principal water channel in the brain being expressed in astrocytes and ependymal cells. AQP4 plays an important role in cerebrospinal fluid (CSF) homeostasis, and alterations in its expression have been associated with hydrocephalus. AQP4 contributes to the development of hydrocephalus by hypoxia in aged mice, reproducing such principal characteristics of the disease. Here, we explore whether these alterations associated with the hydrocephalic state are permanent or can be reverted by reexposure to normoxia. Alterations such as ventriculomegaly, elevated intracranial pressure, and cognitive deficits were reversed, whereas deficits in CSF outflow and ventricular distensibility were not recovered, remaining impaired even one month after reestablishment of normoxia. Interestingly, in AQP4−/− mice, the impairment in CSF drainage and ventricular distensibility was completely reverted by re-normoxia, indicating that AQP4 has a structural role in the chronification of those alterations. Finally, we show that aged mice subjected to two hypoxic episodes experience permanent ventriculomegaly. These data reveal that repetitive hypoxic events in aged cerebral tissue promote the permanent alterations involved in hydrocephalic pathophysiology, which are dependent on AQP4 expression.


2021 ◽  
Author(s):  
Felix Deffner ◽  
Corinna Gleiser ◽  
Ulrich Mattheus ◽  
Andreas Wagner ◽  
Peter H Neckel ◽  
...  

Abstract Background: The choroid plexus (CP) consists of specialized ependymal cells and underlying stroma and blood vessels, producing the bulk of the cerebrospinal fluid (CSF). CP epithelial cells are the site of the internal blood-cerebrospinal fluid barrier, show epithelial characteristics (basal lamina, tight junctions), and express aquaporin-1 (AQP1) apically. In contrast, ventricle-lining ependymal cells express aquaporin-4 (AQP4) basolaterallly. The initial purpose of this study was to analyze the expression of aquaporins in the ependyma – CP transition zone in the human brain to gain insights in aquaporin regulation. The results prompted us to investigate aquaporin expression in the mouse CP of different age groups. Methods: We analyzed the CP from eight body donors (age 74-91) applying immunofluorescence, qPCR, and freeze-fracture electron microscopy. We used antibodies against AQP1, AQP4, NKCC1, and Na/K-ATPase. In addition, we compared the CP from young (2 months), adult (12 months) and old (30 months) mice by qPCR and immunofluorescence. Results: Unexpectedly, many cells in the human CP were positive not only for AQP1 but also for AQP4, normally restricted to ependymal cells and astrocytes. Expression of AQP1 and AQP4 was found in the CP of all eight body donors. These results were confirmed by qPCR, and by electron microscopy detecting AQP4-specific orthogonal arrays of particles. To find out whether AQP4 expression correlated with relevant transport-related proteins we investigated expression of NKCC1 and Na/K-ATPase. Immunostaining for NKCC1 was similar to AQP1 and revealed no particular pattern related to AQP4. Co-staining of AQP4 and Na/K-ATPase indicated a trend for an inverse correlation of their expression. To test for the possibility of age-related changes causing AQP4 expression in the CP, we analyzed mouse brains from different age groups and found a significant increase of AQP4 on the mRNA level in old mice compared to young and adult animals. Conclusions: We provide evidence for AQP4 expression in the human and murine CP related to aging which likely contributes to the water flow through the CP epithelium and CSF production. In two alternative hypotheses, we discuss this as a beneficial compensatory, or a detrimental mechanism influencing the previously observed CSF changes during aging.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Lingxiao Pan ◽  
Wei Ding ◽  
Jie Li ◽  
Kaifeng Gan ◽  
Yandong Shen ◽  
...  

Abstract Background Knee osteoarthritis (KOA) is a common cause of disability among the elderly. We aimed to explore the effects of aldehyde dehydrogenase (ALDH) 2 on the progression of KOA and identifying the potential mechanisms. Methods First, ALDH2 expression in knee joint effusion of patients with KOA and the levels of oxidative stress-related markers were determined. After ALDH2 overexpression in monosodium iodoacetate (MIA)-treated SW1353 cells, cell viability was tested with CCK-8 assay. Subsequently, oxidative stress and inflammation-associated factors were measured. Meanwhile, cell apoptosis was assessed with TUNEL staining and expression of apoptosis-related proteins was detected by western blotting. To analyze the mechanism of ALDH2 in KOA, aquaporin 4 (AQP4) expression was determined using western blotting following ALDH2-upregulation. Subsequently, AQP4 was overexpressed to evaluate the changing of oxidative stress, inflammation and apoptosis in SW1353 cells exposed to MIA with ALDH2 overexpression. Results Results indicated that knee joint effusion with higher ALDH2 expression displayed lower oxidative stress. In addition, significantly upregulated ALDH2 expression was observed in MIA-treated SW1353 cells. ALDH2 overexpression oxidative stress, inflammation and apoptosis in SW1353 cells exposed to MIA. Moreover, MIA-triggered elevated expression of AQP4, which was reduced by ALDH2 overexpression. By contrast, AQP4-upregulation abrogated the inhibitory effects of ALDH2 on oxidative stress, inflammation and apoptosis in MIA-induced SW1353 cells. Conclusions ALDH2 inactivates the expression of AQP4, by which mechanism the MIA-induced oxidative stress, inflammation and apoptosis injuries were alleviated, which provides a novel insight for understanding the mechanism of KOA and a promising target for the treatment of this disease.


2021 ◽  
Vol 15 ◽  
Author(s):  
Mun Han ◽  
Hyeon Seo ◽  
Hyojin Choi ◽  
Eun-Hee Lee ◽  
Juyoung Park

Interstitial solutes can be removed by various overlapping clearance systems, including blood–brain barrier (BBB) transport and glymphatic clearance. Recently, focused ultrasound (FUS)-induced BBB disruption (BBBD) has been applied to visualize glymphatic transport. Despite evidence that FUS–BBBD might facilitate glymphatic transport, the nature of fluid movement within the sonication region is yet to be determined. In this study, we sought to determine whether FUS–BBBD may facilitate the local movement of water molecules. Two different FUS conditions (0.60–0.65 MPa and 0.75–0.80 MPa) were used to induce BBBD in the caudate-putamen and thalamus regions of healthy Sprague–Dawley rats. The water diffusion caused by FUS–BBBD was analyzed using the apparent diffusion coefficient (ADC), axial diffusivity, radial diffusivity (RD), and fractional anisotropy, obtained at 5 min, 24 and 48 h, as well as the water channel expression of aquaporin-4 (AQP-4) immunostaining at 48 h after FUS-induced BBBD. In addition, hematoxylin and eosin histopathology and Fluoro-Jade C (FJC) immunostaining were performed to analyze brain damage. The signal changes in ADC and RD in the sonication groups showed significant and transient reduction at 5 min, with subsequent increases at 24 and 48 h after FUS-induced BBBD. When we applied higher sonication conditions, the ADC and RD showed enhancement until 48 h, and became comparable to contralateral values at 72 h. AQP-4 expression was upregulated after FUS-induced BBBD in both sonication conditions at 48 h. The results of this study provide preliminary evidence on how mechanical forces from FUS alter water dynamics through diffusion tensor imaging (DTI) measures and AQP4 expression.


Neuroreport ◽  
2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Siyi Li ◽  
Bingjian Jiang ◽  
Huanhuan Lu ◽  
Shuxuan Huang ◽  
Binglin Fan ◽  
...  

2021 ◽  
Author(s):  
Tatsuya Nakayama

Abstract The pathology of streptococcal meningitis is poorly understood, even though streptococcal infection induces meningitis. The aim of this study was to clarify the relationship between streptococcal meningitis and aquaporin 4 (AQP4) in the mouse brain. After Streptococcus suis infection, the streptococcal number was calculated, and AQP4 mRNA expression in the brain was quantified at 2 and 7 days after infection. At 7 days post-infection, mice with neurological symptoms showed significantly higher S. suis levels in the brain than mice without neurological symptoms. AQP4 expression was significantly decreased in mice with neurological symptoms than in mice without neurological symptoms. Image analysis demonstrated that S. suis progressed to invade the white matter. Pathological analysis revealed that infected mouse brains had higher inflammation and neurological damage scores than uninfected mouse brains. Therefore, mice with neurological symptoms caused by streptococcal meningitis had high S. suis levels in the brain and reduced AQP4 expression.


Sign in / Sign up

Export Citation Format

Share Document