enzyme active site
Recently Published Documents





2022 ◽  
Zohreh Nazarian ◽  
Seyed Shahriar Arab

With the aim of gaining understanding of the molecular basis of Candida antarctica lipase B (CALB) catalyzed regioselective mono aza-Michael addition of Benzhydrazide to Diethyl maleat (DEM) we decided to carry out molecular dynamics (MD) simulation studies in parallel with our experimental study. We found a correlation between the activity of CALB and the choice of solvent. Our study showed that solvent affects the performance of the enzyme due to the binding of solvent molecules to the enzyme active site region, and the solvation energy of substrates in the different solvents. We found that CALB is only active in nonpolar solvent (i.e. Hexane), and therefore we investigated the influence of Hexane on the catalytic activity of CALB for the reaction. The results of this study and related experimental validation from our studies have been discussed here.

Kristen Procko ◽  
Sandy Bakheet ◽  
Josh T. Beckham ◽  
Margaret A. Franzen ◽  
Henry Jakubowski ◽  

2021 ◽  
Vol 9 (12) ◽  
pp. 2514
Michael McCarthy ◽  
Monica Goncalves ◽  
Hannah Powell ◽  
Blake Morey ◽  
Madison Turner ◽  

The anti-virulence strategy is designed to prevent bacterial virulence factors produced by pathogenic bacteria from initiating and sustaining an infection. One family of bacterial virulence factors is the mono-ADP-ribosyltransferase toxins, which are produced by pathogens as tools to compromise the target host cell. These toxins are bacterial enzymes that exploit host cellular NAD+ as the donor substrate to modify an essential macromolecule acceptor target in the host cell. This biochemical reaction modifies the target macromolecule (often protein or DNA) and functions in a binary fashion to turn the target activity on or off by blocking or impairing a critical process or pathway in the host. A structural biology approach to the anti-virulence method to neutralize the cytotoxic effect of these factors requires the search and design of small molecules that bind tightly to the enzyme active site and prevent catalytic function essentially disarming the pathogen. This method requires a high-resolution structure to serve as the model for small molecule inhibitor development, which illuminates the path to drug development. This alternative strategy to antibiotic therapy represents a paradigm shift that may circumvent multi-drug resistance in the offending microbe through anti-virulence therapy. In this report, the rationale for the anti-virulence structural approach will be discussed along with recent efforts to apply this method to treat honey bee diseases using natural products.

2021 ◽  
Nima Rajabi ◽  
Alexander L. Nielsen ◽  
Tobias N. Hansen ◽  
Huy T. Nguyen ◽  
Michael Bæk ◽  

Sirtuin 5 (SIRT5) is a protein lysine deacylase enzyme that regulates diverse biology by hydrolyzing -N-carboxyacyllysine posttranslational modifications in the cell. Inhibition of SIRT5 has been linked to potential treatment of several cancers but potent compounds with activity in cells have been lacking. Here we developed mechanism-based inhibitors that incorporate isosteres of a carboxylic acid residue that is important for high-affinity binding to the enzyme active site. By masking of the tetrazole moiety of the most potent candidate from our initial SAR study, we achieved potent and cytoselective growth inhibition for the treatment of SIRT5-dependent leukemic cancer cell lines in culture. Thus, we provide an efficient, cellularly active small molecule that targets SIRT5, which can help elucidate its function and potential as a future drug target. This work shows that masked biosisosteres of carboxylic acids are viable chemical motifs for the development of inhibitors that target mitochondrial enzymes, which may have applications beyond the sirtuin field.

2021 ◽  
Vol 11 (1) ◽  
Thanuja D. Sudasinghe ◽  
Michael T. Banco ◽  
Donald R. Ronning

AbstractErgothioneine (EGT) is a low molecular weight histidine betaine essential in all domains of life but only synthesized by selected few organisms. Synthesis of EGT by Mycobacterium tuberculosis (M. tb) is critical for maintaining bioenergetic homeostasis and protecting the bacterium from alkylating agents, oxidative stress, and anti-tubercular drugs. EgtD, an S-adenosylmethionine-dependent methyltransferase (AdoMet), catalyzes the trimethylation of L-Histidine to initiate EGT biosynthesis and this reaction has been shown to be essential for EGT production in mycobacteria and for long-term infection of murine macrophages by M. tb. In this work, library screening and structure-guided strategies identified multiple classes of M. tb EgtD inhibitors that bind in various regions of the enzyme active site. X-ray crystal structures of EgtD-inhibitor complexes confirm that L-Histidine analogs bind solely to the L-Histidine binding site while drug-like inhibitors, such as TGX-221, and S-Glycyl-H-1152 span both the L-Histidine and AdoMet binding sites. These enzyme-inhibitor complexes provide detailed structural information of compound scaffolds useful for developing more potent inhibitors that could shorten Tuberculosis treatment regimens by weakening important bacterial defenses.

eLife ◽  
2021 ◽  
Vol 10 ◽  
Holly Fowle ◽  
Ziran Zhao ◽  
Qifang Xu ◽  
Jason S Wasserman ◽  
Xinru Wang ◽  

Protein phosphorylation is a reversible post-translation modification essential in cell signaling. This study addresses a long-standing question as to how the most abundant serine/threonine Protein Phosphatase 2 (PP2A) holoenzyme, PP2A/B55α, specifically recognizes substrates and presents them to the enzyme active site. Here, we show how the PP2A regulatory subunit B55α recruits p107, a pRB-related tumor suppressor and B55α substrate. Using molecular and cellular approaches, we identified a conserved region 1 (R1, residues 615-626) encompassing the strongest p107 binding site. This enabled us to identify an 'HxRVxxV619-625' short linear motif (SLiM) in p107 as necessary for B55α binding and dephosphorylation of the proximal pSer-615 in vitro and in cells. Numerous B55α/PP2A substrates, including TAU, contain a related SLiM C-terminal from a proximal phosphosite, 'p[ST]-P-x(4,10)-[RK]-V-x-x-[VI]-R'. Mutation of conserved SLiM residues in TAU dramatically inhibits dephosphorylation by PP2A/B55α, validating its generality. A data-guided computational model details the interaction of residues from the conserved p107 SLiM, the B55α groove, and phosphosite presentation. Altogether these data provide key insights into PP2A/B55α mechanisms of substrate recruitment and active site engagement, and also facilitate identification and validation of new substrates, a key step towards understanding PP2A/B55α role in multiple cellular processes.

2021 ◽  
Jozafina A. Milicaj ◽  
Bakar A. Hassan ◽  
Joy M. Cote ◽  
Carlos A Ramirez-Mondragon ◽  
Nadiya A. Jaunbocus ◽  

A clinically relevant inhibitor for Heptosyltransferase I (HepI) has been sought after for many years and while many have designed novel small-molecule inhibitors, these compounds lack the bioavailability and potency necessary for therapeutic use. Extensive characterization of the HepI protein has provided valuable insight into the dynamic motions necessary for catalysis that could be targeted for inhibition. With the help of molecular dynamic simulations, aminoglycoside antibiotics were shown to be putative inhibitors for HepI and in this study, they were experimentally determined to be the first in-class nanomolar inhibitors of HepI with the best inhibitor demonstrating a Ki of 600 +/- 90 nM. Detailed kinetic analyses were performed to determine the mechanism of inhibition while circular dichroism spectroscopy, intrinsic tryptophan fluorescence, docking, and MD simulations were used to corroborate kinetic experimental findings. Kinetic analysis methods include Lineweaver-Burk, Dixon, Cornish-Bowden and Mixed-Model of Inhibition which allowed for unambiguous assignment of inhibition mechanism for each inhibitor. In this study, we show that neomycin and kanamycin b are competitive inhibitors against the sugar acceptor substrate while tobramycin exhibits a mixed inhibitory effect and streptomycin is non-competitive. MD simulations also allowed us to suggest that the inhibitors bind tightly and inhibit catalytic dynamics due to a major desolvation penalty of the enzyme active site. While aminoglycosides have long been known as a class of potent antibiotics, they also have been scientifically shown to impact cell membrane stability, and we propose that inhibition of HepI contributes to this effect by disrupting lipopolysaccharide biosynthesis.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Jinwen Wang ◽  
Qianqian Tan ◽  
Junpeng Chen ◽  
Xiaomei Liu ◽  
Zeyan Di ◽  

Toxoplasma gondii is a protozoan parasite that is widely parasitic in the nucleated cells of warm-blooded animals. Bioinformatic analysis of alkyl hydroperoxide reductase 1 (AHP1) of T. gondii is a member of the Prxs family and exhibits peroxidase activity. Cys166 was certified to be a key enzyme active site of TgAHP1, indicating that the enzyme follows a cysteine-dependent redox process. TgAHP1 was present in a punctate staining pattern anterior to the T. gondii nucleus. Oxidative stress experiments showed that the ∆Ahp1 strain was more sensitive to tert-butyl hydroperoxide (tBOOH) than hydrogen peroxide (H2O2), indicating that tBOOH may be a sensitive substrate for TgAHP1. Under tBOOH culture conditions, the ∆Ahp1 strain was significantly less invasive, proliferative, and pathogenic in mice. This was mainly due to the induction of tBOOH, which increased the level of reactive oxygen species in the parasites and eventually led to apoptosis. This study shows that TgAHP1 is a peroxisomes protein with cysteine-dependent peroxidase activity and sensitive to tBOOH.

Amit N. Panaskar ◽  
Ashish Jain ◽  
Pradeep Kumar Mohanty

Aim: Currently, researchers have developed a lot of new active substances as anti-inflammatory agents. One of the target proteins for anti-inflammatory agents is the selective COX-2 active site. Selective COX-2 inhibition is the regulator of the inflammatory reaction cascade. In this research, 3, 4- Dihydropyrimidone derivatives were used to design the anti-inflammatory agent through a selective COX-2 inhibition. The potential activity of 3, 4- Dihydropyrimidone derivatives maybe increase due to the preparation of the Schiff base with aromatic aldehydes. Selective COX-2 inhibition was required to predict their anti-inflammatory activity so, the aim in the present study, molecular docking study of 3,4- dihydropyrimidone derivatives have performed using COX-2 enzyme active site. Methodology: The molecular docking of 3, 4-dihydropyrimidone derivatives were carried out using AutoDock vina Ver.1.1.2. Twenty 3,4-dihydropyrimidone derivatives were docked into the COX-2 active site with Protein data bank code 3LN1. The interactions were evaluated based on the docking score. Celecoxib was used as the reference standard for this study. Results: Twenty 3, 4- dihydropyrimidone derivatives showed the approximate docking score -8.4 to -10.1 kcal/mol. Fourteen 3,4-dihydropyrimidone derivatives have a greater docking score compared to celecoxib used as a standard compound. Derivative D-1 had higher binding energy than other 3,4-dihydropyrimidone derivatives because it has the smallest docking score. Conclusion: All new 3,4-dihydropyrimidone derivatives are feasible to synthesize and performed their in-vitro evaluation.

Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1366
Bathini Thissera ◽  
Ahmed M. Sayed ◽  
Marwa H. A. Hassan ◽  
Sayed F. Abdelwahab ◽  
Ngozi Amaeze ◽  

SARS-CoV-2 virus mutations might increase its virulence, and thus the severity and duration of the ongoing pandemic. Global drug discovery campaigns have successfully developed several vaccines to reduce the number of infections by the virus. However, finding a small molecule pharmaceutical that is effective in inhibiting SARS-CoV-2 remains a challenge. Natural products are the origin of many currently used pharmaceuticals and, for this reason, a library of in-house fungal extracts were screened to assess their potential to inhibit the main viral protease Mpro in vitro. The extract of Penicillium citrinum, TDPEF34, showed potential inhibition and was further analysed to identify potential Mpro inhibitors. Following bio-guided isolation, a series of benzodiazepine alkaloids cyclopenins with good-to-moderate activity against SARS-CoV-2 Mpro were identified. The mode of enzyme inhibition of these compounds was predicted by docking and molecular dynamic simulation. Compounds 1 (isolated as two conformers of S- and R-isomers), 2, and 4 were found to have promising in vitro inhibitory activity towards Mpro, with an IC50 values range of 0.36–0.89 µM comparable to the positive control GC376. The in silico investigation revealed compounds to achieve stable binding with the enzyme active site through multiple H-bonding and hydrophobic interactions. Additionally, the isolated compounds showed very good drug-likeness and ADMET properties. Our findings could be utilized in further in vitro and in vivo investigations to produce anti-SARS-CoV-2 drug candidates. These findings also provide critical structural information that could be used in the future for designing potent Mpro inhibitors.

Sign in / Sign up

Export Citation Format

Share Document