turbulent dissipation
Recently Published Documents


TOTAL DOCUMENTS

326
(FIVE YEARS 67)

H-INDEX

43
(FIVE YEARS 7)

Author(s):  
Guangtai Shi ◽  
Yue Dan ◽  
Yexiang Xiao ◽  
Zekui Shu ◽  
Xiaobing Liu

The internal flow of the multiphase pump is complicated owing to its specific structure. To reveal the effect of the inlet gas volume fraction (IGVF) on the turbulent dissipation characteristics, the method of combining numerical simulation based on k-ε turbulence model with experiment was adopted, and the turbulent dissipation of the multiphase pump was quantitatively and qualitatively analyzed in both the pure water and gas-liquid two phases condition. Results showed the vortexes were primarily distributed in the diffusers at different inlet gas volume fractions (IGVFs), near the middle of the first diffuser and the outlet of the next diffuser. At the same time, the larger value of the turbulent dissipation than that in the impellers was concentrated in the inlet and outlet of the impellers and diffusers. In addition, the effect of IGVFs on the turbulent dissipation increased gradually from the hub to the shroud at the inlet section of the first impeller. Moreover, the turbulent dissipation became increasingly unsymmetrical from the hub to the shroud at the outlet section of the first impeller.


Abstract We provide a first-principles analysis of the energy fluxes in the oceanic internal wavefield. The resulting formula is remarkably similar to the renowned phenomenological formula for the turbulent dissipation rate in the ocean which is known as the Finescale Parameterization. The prediction is based on the wave turbulence theory of internal gravity waves and on a new methodology devised for the computation of the associated energy fluxes. In the standard spectral representation of the wave energy density, in the two-dimensional vertical wavenumber – frequency (m – w) domain, the energy fluxes associated with the steady state are found to be directed downscale in both coordinates, closely matching the Finescale-Parameterization formula in functional form and in magnitude. These energy transfers are composed of a ‘local’ and a ‘scale-separated’ contributions; while the former is quantified numerically, the latter is dominated by the Induced Diffusion process and is amenable to analytical treatment. Contrary to previous results indicating an inverse energy cascade from high frequency to low, at odds with observations, our analysis of all non-zero coefficients of the diffusion tensor predicts a direct energy cascade. Moreover, by the same analysis fundamental spectra that had been deemed ‘no-flux’ solutions are reinstated to the status of ‘constant-downscale-flux’ solutions. This is consequential for an understanding of energy fluxes, sources and sinks that fits in the observational paradigm of the Finescale Parameterization, solving at once two long-standing paradoxes that had earned the name of ‘Oceanic Ultraviolet Catastrophe’.


Author(s):  
Md Mizanur Rahman ◽  
Khalid Hasan ◽  
Wenchang Liu ◽  
Xinming Li

A new zero-equation model (ZEM) is devised with an eddy-viscosity formulation using a stress length variable which the structural ensemble dynamics (SED) theory predicts. The ZEM is distinguished by obvious physical parameters, quantifying the underlying flow domain with a universal multi-layer structure. The SED theory is also utilized to formulate an anisotropic Bradshaw stress-intensity factor, parameterized with an eddy-to-laminar viscosity ratio. Bradshaw’s structure function is employed to evaluate the kinetic energy of turbulence k and turbulent dissipation rate epsilon  . The proposed ZEM is intrinsically plausible, having a dramatic impact on the prediction of wall-bounded turbulence. 


Author(s):  
Lin Hua ◽  
Hong Li ◽  
Chen Chao ◽  
Jiang Yue ◽  
Zhang Zhonghua

Abstract The effects of sandy water on the W-shaped labyrinth channel of micro-sprinkler irrigation systems with large flowrate were investigated using Computational Fluid Dynamics (CFD). Using ANSYS FLUENT software and different inflow conditions (e.g., pressure, velocity, sediment concentration, and sand particle diameter), internal turbulent multiphase flow and sand deposition were simulated by the Eulerian multiphase flow model. Particle erosion in the labyrinth channel was calculated by the Discrete Phase Model (DPM). The results show that vortex movements and shear actions at the boundary layer cause self-flushing in the channel. The location of sand particle deposits and the turbulent dissipation rate are related to the operating pressure, which is optimal at 300 kPa. The erosion rate of the channel wall is proportional to the inflow sediment concentration but has no obvious relationship with inflow velocity. Based on the movement regulation of sand particles in the labyrinth channel, recommendations on filtration requirements and operating pressure of irrigation systems are proposed.


2021 ◽  
Author(s):  
Tomas Chor ◽  
Jacob Wenegrat ◽  
John Taylor

Submesoscale processes provide a pathway for energy to transfer from the balanced circulation to turbulent dissipation. One class of submesoscale phenomena that has been shown to be particularly effective at removing energy from the balanced flow are centrifugal-symmetric instabilities (CSIs), which grow via geostrophic shear production. CSIs have been observed to generate significant mixing in both the surface boundary layer and bottom boundary layer flows along bathymetry, where they have been implicated in the mixing and watermass transformation of Antarctic Bottom Water. However, the mixing efficiency (i.e. the fraction of the energy extracted from the flow used to irreversibly mix the fluid) of these instabilities remains uncertain, making estimates of mixing and energy dissipation due to CSI difficult.In this work we use large-eddy simulations to investigate the mixing efficiency of CSIs in the submesoscale range. We find that centrifugally-dominated CSIs (i.e. CSI mostly driven by horizontal shear production) tend to have a higher mixing efficiency than symmetrically-dominated ones (i.e. driven by vertical shear production). The mixing efficiency associated with CSIs can therefore alternately be significantly higher or significantly lower than the canonical value used by most studies. These results can be understood in light of recent work on stratified turbulence, whereby CSIs control the background state of the flow in which smaller-scale secondary overturning instabilities develop, thus actively modifying the characteristics of mixing by Kelvin-Helmholtz instabilities. Our results also suggest that it may be possible to predict the mixing efficiency with more readily measurable parameters (namely the Richardson and Rossby numbers), which would allow for parameterization of this effect.


2021 ◽  
Vol 927 ◽  
Author(s):  
Daulet Izbassarov ◽  
Marco E. Rosti ◽  
Luca Brandt ◽  
Outi Tammisola

Direct numerical simulations are carried out to study the effect of finite Weissenberg number up to $Wi=16$ on laminar and turbulent channel flows of an elastoviscoplastic (EVP) fluid, at a fixed bulk Reynolds number of $2800$ . The incompressible flow equations are coupled with the evolution equation for the EVP stress tensor by a modified Saramito model that extends both the Bingham viscoplastic and the finite extensible nonlinear elastic-Peterlin (FENE-P) viscoelastic models. In turbulent flow, we find that drag decreases with both the Bingham and Weissenberg numbers, until the flow laminarises at high enough elastic and yield stresses. Hence, a higher drag reduction is achieved than in the viscoelastic flow at the same Weissenberg number. The drag reduction persists at Bingham numbers up to 20, in contrast to viscoplastic flow, where the drag increases in the laminar regime compared with a Newtonian flow. Moreover, elasticity affects the laminarisation of an EVP flow in a non-monotonic fashion, delaying it at lower and promoting it at higher Weissenberg numbers. A hibernation phenomenon is observed in the EVP flow, leading to large changes in the unyielded regions. Finally, plasticity is observed to affect both low- and high-speed streaks equally, attenuating the turbulent dissipation and the fragmentation of turbulent structures.


2021 ◽  
Author(s):  
Lili Shen ◽  
Yuting Wu ◽  
Wei Wang ◽  
Biao Lei ◽  
Wei Duan ◽  
...  

Abstract As a type of positive displacement expander, single screw expander (SSEs) can be widely applied in the energy storage systems and waste heat recovery field. The irreversible losses (such as leakage, flow, heat transfer, intake and exhaust pressure loss…) have great influence on the expander performance. However, irreversible flow loss in the expander is nearly impossible to investigate experimentally and theoretically. In this paper, a three-dimensional computational fluid dynamics (CFD) study of SSE using mesh deformation approach was presented. The CFD model was validated by the experimental results. Field distribution of pressure, temperature and velocity of SSE were carried out. An energy loss factor based on entropy production principle was used to measure the irreversible flow (including leakage) loss. The energy loss caused by direct dissipation and turbulent fluctuation dissipation was compared. The energy loss of different region was investigated. Results show that energy loss of the turbulent dissipation is far more than that of direct dissipation. The energy loss factor decreases from 0.547 to 0.221 when the rotation speed changes from 2000rpm to 4000rpm. The shaft efficiency increases from 39.8% to 52.1% with the internal volume ratio from 3 to 5.


Author(s):  
Sean R. Haney ◽  
Alexandra J. Simpson ◽  
Jacqueline M. McSweeney ◽  
Amy F. Waterhouse ◽  
Merrick C. Haller ◽  
...  

AbstractThe ocean is home to many different submesoscale phenomena, including internal waves, fronts, and gravity currents. Each of these processes entail complex nonlinear dynamics, even in isolation. Here we present shipboard, moored, and remote observations of a submesoscale gravity current front created by a shoaling internal tidal bore in the coastal ocean. The internal bore is observed to flatten as it shoals, leaving behind a gravity current front that propagates significantly slower than the bore. We posit that the generation and separation of the front from the bore is related to particular stratification ahead of the bore, which allows the bore to reach the maximum possible internal wave speed. After the front is calved from the bore, it is observed to propagate as a gravity current for ≈4 hours, with associated elevated turbulent dissipation rates. A strong cross-shore gradient of along-shore velocity creates enhanced vertical vorticity (Rossby number ≈ 40) that remains locked with the front. Lateral shear instabilities develop along the front and may hasten its demise.


2021 ◽  
Vol 926 ◽  
Author(s):  
A.F. Wienkers ◽  
L.N. Thomas ◽  
J.R. Taylor

In Part 1 (Wienkers, Thomas & Taylor, J. Fluid Mech., vol. 926, 2021, A6), we described the theory for linear growth and weakly nonlinear saturation of symmetric instability (SI) in the Eady model representing a broad frontal zone. There, we found that both the fraction of the balanced thermal wind mixed down by SI and the primary source of energy are strongly dependent on the front strength, defined as the ratio of the horizontal buoyancy gradient to the square of the Coriolis frequency. Strong fronts with steep isopycnals develop a flavour of SI we call ‘slantwise inertial instability’ by extracting kinetic energy from the background flow and rapidly mixing down the thermal wind profile. In contrast, weak fronts extract more potential energy from the background density profile, which results in ‘slantwise convection.’ Here, we extend the theory from Part 1 using nonlinear numerical simulations to focus on the adjustment of the front following saturation of SI. We find that the details of adjustment and amplitude of the induced inertial oscillations depend on the front strength. While weak fronts develop narrow frontlets and excite small-amplitude vertically sheared inertial oscillations, stronger fronts generate large inertial oscillations and produce bore-like gravity currents that propagate along the top and bottom boundaries. The turbulent dissipation rate in these strong fronts is large, highly intermittent and intensifies during periods of weak stratification. We describe each of these mechanisms and energy pathways as the front evolves towards the final adjusted state, and in particular focus on the effect of varying the dimensionless front strength.


Sign in / Sign up

Export Citation Format

Share Document