double peak structure
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 13)

H-INDEX

9
(FIVE YEARS 3)

2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Antonio Sanna ◽  
Camilla Pellegrini ◽  
Eva Liebhaber ◽  
Kai Rossnagel ◽  
Katharina J. Franke ◽  
...  

AbstractWe present a scanning tunneling microscopy (STM) and ab-initio study of the anisotropic superconductivity of 2H-NbSe2 in the charge-density-wave (CDW) phase. Differential-conductance spectra show a clear double-peak structure, which is well reproduced by density functional theory simulations enabling full k- and real-space resolution of the superconducting gap. The hollow-centered (HC) and chalcogen-centered (CC) CDW patterns observed in the experiment are mapped onto separate van der Waals layers with different electronic properties. We identify the CC layer as the high-gap region responsible for the main STM peak. Remarkably, this region belongs to the same Fermi surface sheet that is broken by the CDW gap opening. Simulations reveal a highly anisotropic distribution of the superconducting gap within single Fermi sheets, setting aside the proposed scenario of a two-gap superconductivity. Our results point to a spatially localized competition between superconductivity and CDW involving the HC regions of the crystal.


Atoms ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 78
Author(s):  
R. D. DuBois ◽  
O. G. de Lucio

Triply differential data are presented for the 200 eV positron and electron impact ionization of argon. Six electron emission energies between 2.6 and 19 eV, and for scattering angles of 2, 3, and 4 degrees cover a momentum transfer range of 0.16 to 0.31 a.u. The binary and recoil intensities are fitted using a double peak structure in both regions, which, for the present kinematic conditions, are unresolved. The fitted peak intensities and angular positions are shown to have systematic dependences as a function of the momentum transfer and kinematic emission angle, respectively, and illustrate projectile charge effects. A comparison with available theories is made where it is seen that the most notable differences include the fact that for the binary lobe, the observed intensity for emission angles around 100° is absent in the theories, and the theoretical predications overestimate the importance of recoil interactions.


2020 ◽  
Vol 63 (Vol 63 (2020)) ◽  
Author(s):  
Jouni Takalo

Abstract We analyze the temporal distribution of sunspot groups for even and odd cycles in the range SC12-SC24. It seems that cycle 24 is a characteristic even cycle, although with low amplitude. The number of large sunspot groups for cycle 24 is relatively smaller than for the average of both even and odd cycles SC12-SC23, and there is a deep decline of the large groups in the middle of the cycle. Temporal evolution of the sunspot groups of the even cycles is non-synchronous such that the northern hemisphere distribution of groups maximizes earlier that the southern hemisphere groups. This leads to a double-peak structure for the average even cycle. On the other hand, the distributions of the sunspot groups of odd cycles maximize simultaneously. We show that this double-peak structure intensifies the Gnevyshev gap (GG) for the even cycles, but is not its primary cause. On the contrary, we show that the GG exists for even and odd cycles, and separately on both hemispheres. We resample all cycles to have equal number of 3945 days and study the difference in the evolution of average total group area and average group area of the even and odd cycles separately. The analysis shows that there is a decline in both total area and average area in the even cycles 1445 days (about four years) after the beginning of the cycle, which is at least 99 % significant for both total and average area. The odd cycles do not have such a clear decline.


2020 ◽  
Vol 496 (1) ◽  
pp. 504-522 ◽  
Author(s):  
Stevanus K Nugroho ◽  
Neale P Gibson ◽  
Ernst J W de Mooij ◽  
Chris A Watson ◽  
Hajime Kawahara ◽  
...  

ABSTRACT We analyse the transmission spectra of KELT-20b/MASCARA-2b to search for possible thermal inversion agents. The data consist of three transits obtained using HARPSN and one using CARMENES. We removed stellar and telluric lines before cross-correlating the residuals with spectroscopic templates produced using a 1D plane-parallel model, assuming an isothermal atmosphere and chemical equilibrium at solar metallicity. Using a likelihood-mapping method, we detect Fe i at > 13σ, Ca ii H$\&$K at > 6σ and confirm the previous detections of Fe ii, Ca ii IR Triplet, and Na i D. The detected signal of Fe i is shifted by −3.4 ± 0.4 km s−1 from the planetary rest frame, which indicates a strong day–night wind. Our likelihood-mapping technique also reveals that the absorption features of the detected species extend to different altitudes in the planet’s atmosphere. Assuming that the line lists are accurate, we do not detect other potential thermal inversion agents (NaH, MgH, AlO, SH, CaO, VO, FeH, and TiO) suggesting that non-chemical equilibrium mechanisms (e.g. a cold-trap) might have removed Ti- and V-bearing species from the upper atmosphere. Our results, therefore, show that KELT-20b/MASCARA-2b cannot possess an inversion layer caused by a TiO/VO-related mechanism. The presence of an inversion layer would therefore likely be caused by metal atoms such as Fe i and Fe ii. Finally, we report a double-peak structure in the Fe i signal in all of our data sets that could be a signature of atmospheric dynamics. However, further investigation is needed to robustly determine the origin of the signal.


2019 ◽  
Vol 490 (2) ◽  
pp. 2458-2466 ◽  
Author(s):  
Shivangi Gupta ◽  
Sachindra Naik ◽  
Gaurava K Jaisawal

ABSTRACT We report the results obtained from a detailed timing and spectral studies of Be/X-ray binary pulsar 2S 1417−624 using data from Swift and NuSTAR observatories. The observations were carried out at the peak of a giant outburst of the pulsar in 2018. X-ray pulsations at ∼17.475 s were detected in the source light curves up to 79 keV. The evolution of the pulse profiles with energy was found to be complex. A four-peaked profile at lower energies gradually evolved into a double-peak structure at higher energies. The pulsed fraction of the pulsar, calculated from the NuSTAR observation was found to follow an anticorrelation trend with luminosity as observed during previous giant X-ray outburst studies in 2009. The broad-band spectrum of the pulsar is well described by a composite model consisting of a cut-off power-law model modified with the interstellar absorption, a thermal blackbody component with a temperature of ≈1 keV, and a Gaussian function for the 6.4 keV iron emission line. Though the pulsar was observed at the peak of the giant outburst, there was no signature of presence of any cyclotron line feature in the spectrum. The radius of the blackbody emitting region was estimated to be ≈2 km, suggesting that the most probable site of its origin is the stellar surface of the neutron star. Physical models were also explored to understand the emission geometry of the pulsar and are discussed in the paper.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Max Popp ◽  
Sandrine Bony

Abstract Deep convection can exhibit a large diversity of spatial organizations along the equator. The form of organization may affect the tropical large-scale motions of the atmosphere, but observational evidence is currently missing. Here we show using observations that when convection along the equator is more clustered in the zonal direction, the tropical rain belt widens in the meridional direction, and exhibits a double-peak structure. About half of the influence of the convective clustering on the width of the rain belt is associated with the annual cycle and the other half is associated with unforced climate variability. Idealized climate model experiments show that the zonal convective clustering alone can explain the observed behavior and that the behavior can be explained with an energetic framework. This demonstrates that the representation of equatorial convective clustering is important for modeling the tropical rainfall distribution accurately.


2019 ◽  
Vol 76 (8) ◽  
pp. 2399-2427 ◽  
Author(s):  
Dehai Luo ◽  
Wenqi Zhang ◽  
Linhao Zhong ◽  
Aiguo Dai

Abstract In this paper, an extended nonlinear multiscale interaction model of blocking events in the equivalent barotropic atmosphere is used to investigate the effect of a slowly varying zonal wind in the meridional direction on dipole blocking that is regarded as a nonlinear Rossby wave packet. It is shown that the meridional gradient of potential vorticity (PVy=∂PV/∂y) prior to the blocking onset, which is related to the background zonal wind and its nonuniform meridional shear, can significantly affect the lifetime, intensity, and north–south asymmetry of dipole blocking, while the blocking dipole itself is driven by preexisting incident synoptic-scale eddies. The magnitude of the background PVy determines the energy dispersion and nonlinearity of blocking. It is revealed that a small background PVy is a prerequisite for strong and long-lived eddy-driven blocking that behaves as a persistent meandering westerly jet stream, while the blocking establishment further reduces the PVy within the blocking region, resulting in a positive feedback between blocking and PVy. When the core of the background westerly jet shifts from higher to lower latitudes, the blocking shows a northwest–southeast-oriented dipole with a strong anticyclonic anomaly to the northwest and a weak cyclonic anomaly to the southeast as its northern pole moves westward more rapidly and has weaker energy dispersion and stronger nonlinearity than its southern pole because of the smaller PVy in higher latitudes. The opposite is true when the background jet shifts toward higher latitudes. The asymmetry of dipole blocking vanishes when the background jet shows a symmetric double-peak structure. Thus, a small prior PVy is a favorable precursor for the occurrence of long-lived and large-amplitude blocking.


2019 ◽  
Vol 11 (3) ◽  
pp. 76 ◽  
Author(s):  
A. A. Shukri ◽  
F. S. Nammas

The thermal and magnetic properties of a parabolic GaAs quantum dot for two-Harmonically interacting electrons when it exposed to an external magnetic field, taking into account the spin-Zeeman energy are investigated using the canonical ensemble approach. The effect of spin on these properties is also investigated. With the possibility of a basic and physically sensible model of electron-electron interaction, the issue is precisely soluble. We found a Schottky-like anomaly in the heat capacity at low temperature, while it saturates to the 4kB value as the temperature increases. Also it is noted that entropy enhances with temperature as expected. However as a function of a magnetic field, a peak structure is observed in heat capacity at very low values of magnetic field, while it saturates to the 2kB value as magnetic field increases. Also we noticed that these peaks are not presented in the spinless case. Moreover magnetic field does not show a significant effect on the entropy at high temperatures, but at relatively lower temperatures, the entropy shows a monotonic increase with magnetic field. As a function of the Lande g* factor, we found a local minima and a double peak-structure in the susceptibility and in the heat capacity at g*=0. It is demonstrated that the favored state for both magnetization and susceptibility is the diamagnetic state. The significant effect of the spin on the magnetic properties of quantum dot is seen at low values of temperature and magnetic field. Moreover, our results showed a very good agreement with reported previous works.


Sign in / Sign up

Export Citation Format

Share Document