anabolic resistance
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 51)

H-INDEX

24
(FIVE YEARS 3)

Nutrients ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 53
Author(s):  
Hüseyin Hüsrev Turnagöl ◽  
Şükran Nazan Koşar ◽  
Yasemin Güzel ◽  
Selin Aktitiz ◽  
Muhammed Mustafa Atakan

Sports participation is not without risk, and most athletes incur at least one injury throughout their careers. Combat sports are popular all around the world, and about one-third of their injuries result in more than 7 days of absence from competition or training. The most frequently injured body regions are the head and neck, followed by the upper and lower limbs, while the most common tissue types injured are superficial tissues and skin, followed by ligaments and joint capsules. Nutrition has significant implications for injury prevention and enhancement of the recovery process due to its effect on the overall physical and psychological well-being of the athlete and improving tissue healing. In particular, amino acid and protein intake, antioxidants, creatine, and omega-3 are given special attention due to their therapeutic roles in preventing muscle loss and anabolic resistance as well as promoting injury healing. The purpose of this review is to present the roles of various nutritional strategies in reducing the risk of injury and improving the treatment and rehabilitation process in combat sports. In this respect, nutritional considerations for muscle, joint, and bone injuries as well as sports-related concussions are presented. The injury risk associated with rapid weight loss is also discussed. Finally, preoperative nutrition and nutritional considerations for returning to a sport after rehabilitation are addressed.


Author(s):  
Nile F. Banks ◽  
Emily M. Rogers ◽  
David D. Church ◽  
Arny A. Ferrando ◽  
Nathaniel D.M. Jenkins

2021 ◽  
Vol 22 (24) ◽  
pp. 13575
Author(s):  
Isabelle Alldritt ◽  
Paul L. Greenhaff ◽  
Daniel J. Wilkinson

Muscle deconditioning impairs both locomotor function and metabolic health, and is associated with reduced quality life and increased mortality rates. Despite an appreciation of the existence of phenomena such as muscle anabolic resistance, mitophagy, and insulin resistance with age and disease in humans, little is known about the mechanisms responsible for these negative traits. With the complexities surrounding these unknowns and the lack of progress to date in development of effective interventions, there is a need for alternative approaches. Metabolomics is the study of the full array of metabolites within cells or tissues, which collectively constitute the metabolome. As metabolomics allows for the assessment of the cellular metabolic state in response to physiological stimuli, any chronic change in the metabolome is likely to reflect adaptation in the physiological phenotype of an organism. This, therefore, provides a holistic and unbiased approach that could be applied to potentially uncover important novel facets in the pathophysiology of muscle decline in ageing and disease, as well as identifying prognostic markers of those at risk of decline. This review will aim to highlight the current knowledge and potential impact of metabolomics in the study of muscle mass loss and deconditioning in humans and will highlight key areas for future research.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 296-296
Author(s):  
Jenna Bartley

Abstract Determining ways to improve hip fracture recovery in older adults is important, however recruitment of this target population into clinical trials is challenging. Multimodal interventions that target multiple mechanisms of recovery may improve outcomes, but each component presents unique recruitment barriers. While exercise interventions have been shown to be beneficial for hip fracture recovery, offering exercise following completion of conventional physical therapy can be viewed as a burdensome time commitment. Hormone replacement therapy may hold promise for overcoming anabolic resistance, but concern about adverse side effects can also deter participation. STEP-HI is a multisite trial testing whether exercise and testosterone can improve hip fracture recovery in older women. In this talk, recruitment barriers experienced in STEP-HI and strategies employed to overcome these barriers will be discussed. Strategies include: partnering with hospitals, skilled nursing facilities and orthopedic surgeons. providing talks and education materials; and featuring past participant testimonials in recruitment materials.


Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 828
Author(s):  
Lee M. Margolis ◽  
J Philip Karl ◽  
Marques A. Wilson ◽  
Julie L. Coleman ◽  
Claire C. Whitney ◽  
...  

This study used global metabolomics to identify metabolic factors that might contribute to muscle anabolic resistance, which develops when aerobic exercise is initiated with low muscle glycogen using global metabolomics. Eleven men completed this randomized, crossover study, completing two cycle ergometry glycogen depletion trials, followed by 24 h of isocaloric refeeding to elicit low (LOW; 1.5 g/kg carbohydrate, 3.0 g/kg fat) or adequate (AD; 6.0 g/kg carbohydrate 1.0 g/kg fat) glycogen. Participants then performed 80 min of cycling (64 ± 3% VO2 peak) while ingesting 146 g carbohydrate. Serum was collected before glycogen depletion under resting and fasted conditions (BASELINE), and before (PRE) and after (POST) exercise. Changes in metabolite profiles were calculated by subtracting BASELINE from PRE and POST within LOW and AD. There were greater increases (p < 0.05, Q < 0.10) in 64% of branched-chain amino acids (BCAA) metabolites and 69% of acyl-carnitine metabolites in LOW compared to AD. Urea and 3-methylhistidine had greater increases (p < 0.05, Q < 0.10) in LOW compared to AD. Changes in metabolomics profiles indicate a greater reliance on BCAA catabolism for substrate oxidation when exercise is initiated with low glycogen stores. These findings provide a mechanistic explanation for anabolic resistance associated with low muscle glycogen, and suggest that exogenous BCAA requirements to optimize muscle recovery are likely greater than current recommendations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Konstantinos Prokopidis ◽  
Edward Chambers ◽  
Mary Ni Lochlainn ◽  
Oliver C. Witard

Aging is associated with a decline in skeletal muscle mass and function—termed sarcopenia—as mediated, in part, by muscle anabolic resistance. This metabolic phenomenon describes the impaired response of muscle protein synthesis (MPS) to the provision of dietary amino acids and practice of resistance-based exercise. Recent observations highlight the gut-muscle axis as a physiological target for combatting anabolic resistance and reducing risk of sarcopenia. Experimental studies, primarily conducted in animal models of aging, suggest a mechanistic link between the gut microbiota and muscle atrophy, mediated via the modulation of systemic amino acid availability and low-grade inflammation that are both physiological factors known to underpin anabolic resistance. Moreover, in vivo and in vitro studies demonstrate the action of specific gut bacteria (Lactobacillus and Bifidobacterium) to increase systemic amino acid availability and elicit an anti-inflammatory response in the intestinal lumen. Prospective lifestyle approaches that target the gut-muscle axis have recently been examined in the context of mitigating sarcopenia risk. These approaches include increasing dietary fiber intake that promotes the growth and development of gut bacteria, thus enhancing the production of short-chain fatty acids (SCFA) (acetate, propionate, and butyrate). Prebiotic/probiotic/symbiotic supplementation also generates SCFA and may mitigate low-grade inflammation in older adults via modulation of the gut microbiota. Preliminary evidence also highlights the role of exercise in increasing the production of SCFA. Accordingly, lifestyle approaches that combine diets rich in fiber and probiotic supplementation with exercise training may serve to produce SCFA and increase microbial diversity, and thus may target the gut-muscle axis in mitigating anabolic resistance in older adults. Future mechanistic studies are warranted to establish the direct physiological action of distinct gut microbiota phenotypes on amino acid utilization and the postprandial stimulation of muscle protein synthesis in older adults.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3536
Author(s):  
Manoel E. Lixandrão ◽  
Igor Longobardi ◽  
Alice E. Leitão ◽  
João V. M. Morais ◽  
Paul A. Swinton ◽  
...  

Higher daily protein intake, with an emphasis on leucine content, is thought to mitigate age-related anabolic resistance, potentially counteracting age-related morphological and functional declines. The present study investigated potential associations between total daily leucine intake and dependent variables, including quadriceps muscle cross-sectional area (CSA) and maximum dynamic muscle strength (1-RM) in a cohort of healthy free-living older individuals of both sexes (n = 67; 34/33 men/women). Participants performed three 24 h dietary recalls and underwent a magnetic resonance imaging exam followed by 1-RM tests. Our results demonstrate moderate associations between total daily leucine and both quadriceps CSA (r = 0.42; p = 0.004) and 1-RM (r = 0.45; p = 0.001). Furthermore, our exploratory biphasic linear regression analyses, adjusted for sex, age, and protein intake relative to body weight, revealed a plateau for daily leucine intake and muscle mass and muscle strength (~7.6–8.0 g·day−1) in older adults. In conclusion, we demonstrated that total daily leucine intake is associated with muscle mass and strength in healthy older individuals and this association remains after controlling for multiple factors, including overall protein intake. Furthermore, our breakpoint analysis revealed non-linearities and a potential threshold for habitual leucine intake, which may help guide future research on the effects of chronic leucine intake in age-related muscle loss.


2021 ◽  
Author(s):  
Daniel R. Moore

AbstractIt is established that protein requirements are elevated in athletes to support their training and post-exercise recovery and adaptation, especially within skeletal muscle. However, research on the requirements for this macronutrient has been performed almost exclusively in younger athletes, which may complicate their translation to the growing population of Master athletes (i.e. > 35 years old). In contrast to older (> 65 years) untrained adults who typically demonstrate anabolic resistance to dietary protein as a primary mediator of the ‘normal’ age-related loss of muscle mass and strength, Master athletes are generally considered successful models of aging as evidenced by possessing similar body composition, muscle mass, and aerobic fitness as untrained adults more than half their age. The primary physiology changes considered to underpin the anabolic resistance of aging are precipitated or exacerbated by physical inactivity, which has led to higher protein recommendations to stimulate muscle protein synthesis in older untrained compared to younger untrained adults. This review puts forth the argument that Master athletes have similar muscle characteristics, physiological responses to exercise, and protein metabolism as young athletes and, therefore, are unlikely to have protein requirements that are different from their young contemporaries. Recommendations for protein amount, type, and pattern will be discussed for Master athletes to enhance their recovery from and adaptation to resistance and endurance training.


2021 ◽  
Vol 8 ◽  
Author(s):  
Giacomo Garibotto ◽  
Michela Saio ◽  
Francesca Aimasso ◽  
Elisa Russo ◽  
Daniela Picciotto ◽  
...  

A current hypothesis is that dialysis-treated patients are “anabolic resistant” i. e., their muscle protein synthesis (MPS) response to anabolic stimuli is blunted, an effect which leads to muscle wasting and poor physical performance in aging and in several chronic diseases. The importance of maintaining muscle mass and MPS is often neglected in dialysis-treated patients; better than to describe mechanisms leading to energy-protein wasting, the aim of this narrative review is to suggest possible strategies to overcome anabolic resistance in this patient's category. Food intake, in particular dietary protein, and physical activity, are the two major anabolic stimuli. Unfortunately, dialysis patients are often aged and have a sedentary behavior, all conditions which per se may induce a state of “anabolic resistance.” In addition, patients on dialysis are exposed to amino acid or protein deprivation during the dialysis sessions. Unfortunately, the optimal amount and formula of protein/amino acid composition in supplements to maximixe MPS is still unknown in dialysis patients. In young healthy subjects, 20 g whey protein maximally stimulate MPS. However, recent observations suggest that dialysis patients need greater amounts of proteins than healthy subjects to maximally stimulate MPS. Since unneccesary amounts of amino acids could stimulate ureagenesis, toxins and acid production, it is urgent to obtain information on the optimal dose of proteins or amino acids/ketoacids to maximize MPS in this patients' population. In the meantime, the issue of maintaining muscle mass and function in dialysis-treated CKD patients needs not to be overlooked by the kidney community.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mary Ni Lochlainn ◽  
Ayrun Nessa ◽  
Alyce Sheedy ◽  
Rachel Horsfall ◽  
María Paz García ◽  
...  

Abstract Background Loss of skeletal muscle mass and strength occurs with increasing age and is associated with loss of function, disability, and the development of sarcopenia and frailty. Dietary protein is essential for skeletal muscle function, but older adults do not anabolise muscle in response to protein supplementation as well as younger people, so called ‘anabolic resistance’. The aetiology and molecular mechanisms for this are not understood, however the gut microbiome is known to play a key role in several of the proposed mechanisms. Thus, we hypothesise that the gut microbiome may mediate anabolic resistance and therefore represent an exciting new target for ameliorating muscle loss in older adults. This study aims to test whether modulation of the gut microbiome using a prebiotic, in addition to protein supplementation, can improve muscle strength (as measured by chair-rise time) versus protein supplementation alone. Methods The study is a randomised, double-blinded, placebo-controlled trial, with two parallel arms; one will receive prebiotic and protein supplementation, and the other will receive placebo (maltodextrin) and protein supplementation. Participants will be randomised as twin pairs, with one twin from each pair in each arm. Participants will be asked to take supplementation once daily for 12 weeks in addition to resistance exercises. Every participant will receive a postal box, containing their supplements, and the necessary equipment to return faecal, urine, saliva and capillary blood samples, via post. A virtual visit will be performed using online platform at the beginning and end of the study, with measures taken over video. Questionnaires, food diary and cognitive testing will be sent out via email at the beginning and end of the study. Discussion This study aims to provide evidence for the role of the gut microbiome in anabolic resistance to dietary protein. If those who take the prebiotic and protein supplementation have a greater improvement in muscle strength compared with those who take protein supplementation alone, this would suggest that strategies to modify the gut microbiome may reduce anabolic resistance, and therefore potentially mitigate sarcopenia and frailty in older adults. Trial registration Clinicaltrials.gov: NCT04309292. Registered on the 2nd May 2020. 


Sign in / Sign up

Export Citation Format

Share Document