smad proteins
Recently Published Documents


TOTAL DOCUMENTS

255
(FIVE YEARS 18)

H-INDEX

60
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Karthik Chandiran ◽  
Jenny Suarez-Ramirez ◽  
Yinghong Hu ◽  
Zeynep Ugur ◽  
Evan R Jellison ◽  
...  

Transforming growth factor β (TGFβ) is a morphogenic protein that augments antiviral immunity by altering the functional properties of pathogen-specific memory CD8 T cells. During infection, TGFβ inhibits formation of effector (TEFF) and circulating memory CD8 T cells, while encouraging tissue resident memory CD8 T cells (TRM) to settle in peripheral tissues. SMAD proteins are signaling intermediates that are used by members of the TGF cytokine family to modify gene expression. Using RNA-sequencing we determined that SMAD4 altered the transcriptional profile of antiviral CTLs during respiratory infection. Our data show that SMAD4 and TGFβ use alternate signaling pathways to cooperatively regulate a collection of genes that determine whether pathogen-specific memory CD8 T cells localize in peripheral or lymphoid tissues. During infection, SMAD4 acts independently of TGFβ to inhibit TRM development, while inducing genes that support formation of circulating memory CD8 T cells. The genes that are modulated by SMAD4 include several homing receptors (CD103, KLRG1 and CD62L) and transcription factors (Hobit and EOMES) that support memory formation.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qingming Xue ◽  
Hong Jiang ◽  
Jinjie Wang ◽  
Dongshan Wei

Background. LIM and SH3 domain protein 1 (LASP1), highly expressed in a variety of tumors, is considered as a novel tumor metastasis biomarker. However, it is unknown which signaling pathway works and how the signal transduces into cell nucleus to drive tumor progression by LASP1. The aim of this study is to explore the essential role of LASP1 in TGF-β1-induced epithelial-mesenchymal transition (EMT) in lung cancer cells. Methods. The gene and protein levels of LASP-1 were successfully silenced or overexpressed by LASP-1 shRNA lentivirus or pcDNA in TGF-β1-treated lung cancer cell lines, respectively. Then, the cells were developed EMT by TGF-β1. The cell abilities of invasion, migration, and proliferation were measured using Transwell invasion assay, wound healing assay, and MTT assay, respectively. Western blotting was used to observe the protein levels of EMT-associated molecules, including N-cadherin, vimentin, and E-cadherin, and the key molecules in the TGF-β1/Smad/Snail signaling pathway, including pSmad2 and Smad2, pSmad3 and Smad3, and Smad7 in cell lysates, as well as Snail1, pSmad2, and pSmad3 in the nucleus. Results. TGF-β1 induced higher LASP1 expression. LASP1 silence and overexpression blunted or promoted cell invasion, migration, and proliferation upon TGF-β1 stimulation. LASP1 also regulated the expression of vimentin, N-cadherin, and E-cadherin in TGF-β1-treated cells. Activity of key Smad proteins (pSmad2 and pSmad3) and protein level of Smad7 were markedly regulated through LASP1. Furthermore, LASP1 affected the nuclear localizations of pSmad2, pSmad3, and Snail1. Conclusion. This study reveals that LASP1 regulates the TGF-β1/Smad/Snail signaling pathway and EMT markers and features, involving in key signal molecules and their nuclear levels. Therefore, LASP1 might be a drug target in lung cancer.


Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 956
Author(s):  
Marine Jacquet ◽  
Eric Hervouet ◽  
Timothée Baudu ◽  
Michaël Herfs ◽  
Chloé Parratte ◽  
...  

The pathway of selective autophagy, leading to a targeted elimination of specific intracellular components, is mediated by the ATG8 proteins, and has been previously suggested to be involved in the regulation of the Epithelial–mesenchymal transition (EMT) during cancer’s etiology. However, the molecular factors and steps of selective autophagy occurring during EMT remain unclear. We therefore analyzed a cohort of lung adenocarcinoma tumors using transcriptome analysis and immunohistochemistry, and found that the expression of ATG8 genes is correlated with that of EMT-related genes, and that GABARAPL1 protein levels are increased in EMT+ tumors compared to EMT- ones. Similarly, the induction of EMT in the A549 lung adenocarcinoma cell line using TGF-β/TNF-α led to a high increase in GABARAPL1 expression mediated by the EMT-related transcription factors of the SMAD family, whereas the other ATG8 genes were less modified. To determine the role of GABARAPL1 during EMT, we used the CRISPR/Cas9 technology in A549 and ACHN kidney adenocarcinoma cell lines to deplete GABARAPL1. We then observed that GABARAPL1 knockout induced EMT linked to a defect of GABARAPL1-mediated degradation of the SMAD proteins. These findings suggest that, during EMT, GABARAPL1 might intervene in an EMT-regulatory loop. Indeed, induction of EMT led to an increase in GABARAPL1 levels through the activation of the SMAD signaling pathway, and then GABARAPL1 induced the autophagy-selective degradation of SMAD proteins, leading to EMT inhibition.


Author(s):  
Tiago Gomes ◽  
Pau Martin-Malpartida ◽  
Lidia Ruiz ◽  
Eric Aragón ◽  
Tiago N. Cordeiro ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Christopher Agnew ◽  
Pelin Ayaz ◽  
Risa Kashima ◽  
Hanna S. Loving ◽  
Prajakta Ghatpande ◽  
...  

AbstractUpon ligand binding, bone morphogenetic protein (BMP) receptors form active tetrameric complexes, comprised of two type I and two type II receptors, which then transmit signals to SMAD proteins. The link between receptor tetramerization and the mechanism of kinase activation, however, has not been elucidated. Here, using hydrogen deuterium exchange mass spectrometry (HDX-MS), small angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations, combined with analysis of SMAD signaling, we show that the kinase domain of the type I receptor ALK2 and type II receptor BMPR2 form a heterodimeric complex via their C-terminal lobes. Formation of this dimer is essential for ligand-induced receptor signaling and is targeted by mutations in BMPR2 in patients with pulmonary arterial hypertension (PAH). We further show that the type I/type II kinase domain heterodimer serves as the scaffold for assembly of the active tetrameric receptor complexes to enable phosphorylation of the GS domain and activation of SMADs.


2021 ◽  
Vol 22 (15) ◽  
pp. 8124
Author(s):  
Nathalie Thielen ◽  
Margot Neefjes ◽  
Renske Wiegertjes ◽  
Guus van den Akker ◽  
Elly Vitters ◽  
...  

Osteoarthritis (OA) is a degenerative joint disease characterized by irreversible cartilage damage, inflammation and altered chondrocyte phenotype. Transforming growth factor-β (TGF-β) signaling via SMAD2/3 is crucial for blocking hypertrophy. The post-translational modifications of these SMAD proteins in the linker domain regulate their function and these can be triggered by inflammation through the activation of kinases or phosphatases. Therefore, we investigated if OA-related inflammation affects TGF-β signaling via SMAD2/3 linker-modifications in chondrocytes. We found that both Interleukin (IL)-1β and OA-synovium conditioned medium negated SMAD2/3 transcriptional activity in chondrocytes. This inhibition of TGF-β signaling was enhanced if SMAD3 could not be phosphorylated on Ser213 in the linker region and the inhibition by IL-1β was less if the SMAD3 linker could not be phosphorylated at Ser204. Our study shows evidence that inflammation inhibits SMAD2/3 signaling in chondrocytes via SMAD linker (de)-phosphorylation. The involvement of linker region modifications may represent a new therapeutic target for OA.


2021 ◽  
Author(s):  
Tiago Gomes ◽  
Pau Martin-Malpartida ◽  
Lidia Ruiz ◽  
Eric Aragon ◽  
Tiago N. Cordeiro ◽  
...  

Smad transcription factors, the main effectors of the TGFβ (transforming growth factor β) network, have been shaped along the evolution of multicellular animals to regulate essential processes. Smad proteins have a mixed architecture of globular domains and flexible linkers and adopt distinct quaternary structures depending on their activation state and cellular context. Here we studied the structures of full-length Smad4 and Smad2 proteins through an integrative approach combining small-angle X-ray scattering and detailed atomic information obtained from Nuclear Magnetic Resonance spectroscopy, X-ray and molecular dynamic simulations. Both Smad4 and Smad2 populate ensembles of expanded/compact conformations, with the MH1 and MH2 domains tethered by intrinsically disordered linkers that provide conformational freedom to the proteins. In solution, Smad4 is monomeric, whereas Smad2 coexists as monomer-dimer-trimer association states, even without activation. Smad2 dimers, which were previously overlooked, are proposed as key building blocks that define the functional quaternary structures of Smad proteins.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Long Guo ◽  
Aritoshi Iida ◽  
Gandham SriLakshmi Bhavani ◽  
Kalpana Gowrishankar ◽  
Zheng Wang ◽  
...  

AbstractBone formation represents a heritable trait regulated by many signals and complex mechanisms. Its abnormalities manifest themselves in various diseases, including sclerosing bone disorder (SBD). Exploration of genes that cause SBD has significantly improved our understanding of the mechanisms that regulate bone formation. Here, we discover a previously unknown type of SBD in four independent families caused by bi-allelic loss-of-function pathogenic variants in TMEM53, which encodes a nuclear envelope transmembrane protein. Tmem53-/- mice recapitulate the human skeletal phenotypes. Analyses of the molecular pathophysiology using the primary cells from the Tmem53-/- mice and the TMEM53 knock-out cell lines indicates that TMEM53 inhibits BMP signaling in osteoblast lineage cells by blocking cytoplasm-nucleus translocation of BMP2-activated Smad proteins. Pathogenic variants in the patients impair the TMEM53-mediated blocking effect, thus leading to overactivated BMP signaling that promotes bone formation and contributes to the SBD phenotype. Our results establish a previously unreported SBD entity (craniotubular dysplasia, Ikegawa type) and contribute to a better understanding of the regulation of BMP signaling and bone formation.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1356
Author(s):  
Tomas Kuruc ◽  
Martin Kello ◽  
Klaudia Petrova ◽  
Zuzana Kudlickova ◽  
Peter Kubatka ◽  
...  

Over the past decades, natural products have emerged as promising agents with multiple biological activities. Many studies suggest the antioxidant, antiangiogenic, antiproliferative and anticancer effects of chalcones and their derivatives. Based on these findings, we decided to evaluate the effects of the newly synthetized chalcone L1 in a human cervical carcinoma cell (HeLa) model. Presented results were obtained by western blot and flow cytometric analyses, live cell imaging and antimigratory potential of L1 in HeLa cells was demonstrated by scratch assay. In the present study, we proved the role of L1 as an effective agent with antiproliferative activity supported by G2/M cell cycle arrest and apoptosis. Moreover, we proved that L1 is involved in modulating Transforming Growth Factor-β1 (TGF-β) signal transduction through Smad proteins and it also modulates other signalling pathways including Akt, JNK, p38 MAPK, and Erk1/2. The involvement of L1 in epithelial-to-mesenchymal transition was demonstrated by the regulation of N-cadherin, E-cadherin, and MMP-9 levels. Here, we also evaluated the effect of conditioned medium from BJ-5ta human foreskin fibroblasts in HeLa cell cultures with subsequent L1 treatment. Taken together, these data suggest the potential role of newly synthesized chalcone L1 as an anticancer-tumour microenvironment modulating agent.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Shu Yang ◽  
Hongying Zhang ◽  
Hua Yang ◽  
Jin Zhang ◽  
Jiao Wang ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) is one of the common cancers that are very aggressive. The secreted cytokine transforming growth factor-β (TGF-β) promotes cancer metastasis by multiple mechanisms such as epithelial-mesenchymal transition and immune evasion. The canonical TGF-β signaling is largely mediated by smooth muscle actin/mothers against decapentaplegic (SMAD) proteins. The current study aims to explore the regulation of TGF-β/SMAD signaling by selenophosphate synthetase 1 (SEPHS1). Methods Immunohistochemistry was used to detect the expression of SEPHS1 in HCC and adjacent liver tissues. Western blotting and quantitative reverse-transcription PCR were used to detect the protein and mRNA levels in HCC cell lines. Cell migration and invasion were determined by transwell assay. Bioinformatic analysis was conducted to determine SEPHS1 expression in HCC and its correlation with the survival of HCC patients. Results Here we report that SEPHS1 is a positive regulator of SMAD proteins. SEPHS1 expression is up-regulated in HCC compared with adjacent liver tissues. SEPHS1 knockdown leads to decreased expression of SMAD2/3/4 and mesenchymal markers including snail, slug and N-cadherin in HCC cells. Furthermore, SEPHS1 knockdown results in a decrease in HCC cells migration and invasion, and suppresses the stimulation of HCC cells migration and invasion by TGF-β. Overexpression of SEPHS1 in HCC cells promotes cell invasion, which can be abrogated by SMAD3 knockdown. Lastly, higher expression of SEPHS1 is correlated with poor prognosis in HCC patients, as manifested by decreased overall survival and disease-free survival. Conclusions SEPHS1 is a positive regulator of TGF-β/SMAD signaling that is up-regulated in HCC. Increased SEPHS1 expression may indicate poor prognosis for patients with HCC.


Sign in / Sign up

Export Citation Format

Share Document