art gallery problem
Recently Published Documents


TOTAL DOCUMENTS

36
(FIVE YEARS 8)

H-INDEX

7
(FIVE YEARS 1)

2022 ◽  
Vol 69 (1) ◽  
pp. 1-70
Author(s):  
Mikkel Abrahamsen ◽  
Anna Adamaszek ◽  
Tillmann Miltzow

The Art Gallery Problem (AGP) is a classic problem in computational geometry, introduced in 1973 by Victor Klee. Given a simple polygon 풫 and an integer k , the goal is to decide if there exists a set G of k guards within 풫 such that every point p ∈ 풫 is seen by at least one guard g ∈ G . Each guard corresponds to a point in the polygon 풫, and we say that a guard g sees a point p if the line segment pg is contained in 풫. We prove that the AGP is ∃ ℝ-complete, implying that (1) any system of polynomial equations over the real numbers can be encoded as an instance of the AGP, and (2) the AGP is not in the complexity class NP unless NP = ∃ ℝ. As a corollary of our construction, we prove that for any real algebraic number α, there is an instance of the AGP where one of the coordinates of the guards equals α in any guard set of minimum cardinality. That rules out many natural geometric approaches to the problem, as it shows that any approach based on constructing a finite set of candidate points for placing guards has to include points with coordinates being roots of polynomials with arbitrary degree. As an illustration of our techniques, we show that for every compact semi-algebraic set S ⊆ [0, 1] 2 , there exists a polygon with corners at rational coordinates such that for every p ∈ [0, 1] 2 , there is a set of guards of minimum cardinality containing p if and only if p ∈ S . In the ∃ ℝ-hardness proof for the AGP, we introduce a new ∃ ℝ-complete problem ETR-INV. We believe that this problem is of independent interest, as it has already been used to obtain ∃ ℝ-hardness proofs for other problems.


2021 ◽  
Vol 37 (2) ◽  
pp. 621-642
Author(s):  
Hannah Alpert ◽  
Érika Roldán

AbstractHow many chess rooks or queens does it take to guard all squares of a given polyomino, the union of square tiles from a square grid? This question is a version of the art gallery problem in which the guards can “see” whichever squares the rook or queen attacks. We show that $$\lfloor {\frac{n}{2}} \rfloor $$ ⌊ n 2 ⌋ rooks or $$\lfloor {\frac{n}{3}} \rfloor $$ ⌊ n 3 ⌋ queens are sufficient and sometimes necessary to guard a polyomino with n tiles. We then prove that finding the minimum number of rooks or queens needed to guard a polyomino is NP-hard. These results also apply to d-dimensional rooks and queens on d-dimensional polycubes. Finally, we use bipartite matching theorems to describe sets of non-attacking rooks on polyominoes.


2019 ◽  
Vol 11 (02) ◽  
pp. 1950020
Author(s):  
M. Alambardar Meybodi ◽  
M. R. Hooshmandasl ◽  
P. Sharifani ◽  
A. Shakiba

A set [Formula: see text] for the graph [Formula: see text] is called a dominating set if any vertex [Formula: see text] has at least one neighbor in [Formula: see text]. Fomin et al. [Combinatorial bounds via measure and conquer: Bounding minimal dominating sets and applications, ACM Transactions on Algorithms (TALG) 5(1) (2008) 9] gave an algorithm for enumerating all minimal dominating sets with [Formula: see text] vertices in [Formula: see text] time. It is known that the number of minimal dominating sets for interval graphs and trees on [Formula: see text] vertices is at most [Formula: see text]. In this paper, we introduce the domination cover number as a new criterion for evaluating the dominating sets in graphs. The domination cover number of a dominating set [Formula: see text], denoted by [Formula: see text], is the summation of the degrees of the vertices in [Formula: see text]. Maximizing or minimizing this parameter among all minimal dominating sets has interesting applications in many real-world problems, such as the art gallery problem. Moreover, we investigate this concept for different graph classes and propose some algorithms for finding the domination cover number in trees and block graphs.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1438 ◽  
Author(s):  
Andrey Savkin ◽  
Hailong Huang

The paper focuses on surveillance and monitoring using aerial drones. The aim is to estimate the minimal number of drones necessary to monitor a given area of a very uneven terrain. The proposed problem may be viewed as a drone version of the 3D Art Gallery Problem. A computationally simple algorithm to calculate an upper estimate of the minimal number of drones together with their locations is developed. Computer simulations are conducted to demonstrate the effectiveness of the proposed method.


Author(s):  
Arthur Benjamin ◽  
Gary Chartrand ◽  
Ping Zhang

This chapter considers the concept of planar graph and its underlying theory. It begins with a discussion of the Three Houses and Three Utilities Problem and how it can be represented by a graph. It shows that solving the Three Houses and Three Utilities Problem is equivalent to the problem of determining whether the graph that represents it can be drawn in the plane without any of its edges crossing. It then describes the Euler Identity and the Euler Polyhedron Formula, along with the proposition that every planar graph contains a vertex of degree 5 or less. It also examines Kuratowski's Theorem, introduced by the Polish topologist Kazimierz Kuratowski, and the problem of crossing number. Finally, it provides an overview of the Art Gallery Problem, Wagner's Conjecture, and the Brick-Factory Problem.


Sign in / Sign up

Export Citation Format

Share Document