decoy state
Recently Published Documents


TOTAL DOCUMENTS

260
(FIVE YEARS 75)

H-INDEX

31
(FIVE YEARS 3)

2022 ◽  
Vol 105 (1) ◽  
Author(s):  
Giulio Foletto ◽  
Francesco Picciariello ◽  
Costantino Agnesi ◽  
Paolo Villoresi ◽  
Giuseppe Vallone

Author(s):  
Kai Yu ◽  
Chun Hui Zhang ◽  
Xing Yu Zhou ◽  
Qin Wang

Abstract In quantum key distribution (QKD), passive decoy-state method can simplify the intensity modulation and reduce some of side-channel information leakage and modulation errors. It is usually implemented with a heralded single-photon source. In [Physical Review A 96, 032312 (2016)], a novel passive decoy-state method is proposed by Wang et al., which uses two local detectors to generate more detection events for tightly estimating channel parameters. However, in original scheme, the two local detectors are assumed to be identical, including same detection efficiency and dark count rate, which is often not satisfied in realistic experiment. Therefore, in this paper, we construct a model for this passive decoy-state QKD scheme with two mismatched detectors and explore the effect on QKD performance with certain parameter. We also take the finite-size effect into consideration, showing the performance with statistical fluctuations. The results show that the efficiencies of local detectors affect the key rate more obviously than dark count rates. Our work provides a reference value for realistic QKD system.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 602
Author(s):  
Víctor Zapatero ◽  
Álvaro Navarrete ◽  
Kiyoshi Tamaki ◽  
Marcos Curty

The decoy-state method in quantum key distribution (QKD) is a popular technique to approximately achieve the performance of ideal single-photon sources by means of simpler and practical laser sources. In high-speed decoy-state QKD systems, however, intensity correlations between succeeding pulses leak information about the users' intensity settings, thus invalidating a key assumption of this approach. Here, we solve this pressing problem by developing a general technique to incorporate arbitrary intensity correlations to the security analysis of decoy-state QKD. This technique only requires to experimentally quantify two main parameters: the correlation range and the maximum relative deviation between the selected and the actually emitted intensities. As a side contribution, we provide a non-standard derivation of the asymptotic secret key rate formula from the non-asymptotic one, in so revealing a necessary condition for the significance of the former.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012130
Author(s):  
D Babukhin ◽  
D Sych

Abstract Quantum key distribution (QKD) has a promise of unconditionally secure communication between the remote sides. The real-world QKD implementations, however, have numerous loopholes, both of engeneering and physical origin, and compromise the security promise. In this work, we investigate two attack strategies on the passive side channel of the light source along with the optimal cloning attack on the BB84 protocol with decoy-states. We calculate an upper bound of a secret key rate for these situations and show that the joint measurement attack on the signal and side channel degree of freedom is more effective to the adversary.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012141
Author(s):  
A Gavrilovich ◽  
D Sych ◽  
Y Kurochkin

Abstract Passive generation is a sophisticated way of state preparation in quantum key distribution (QKD) systems which is designed to exploit some internal physical process as a source of randomness. It can be profitable in a wide range of scenarios. However, the original analysis of the passive scheme implies an ideal interference which is almost impossible to assure in practice, therefore utilizing such method potentially compromises the security of the system. Here we develop a general technique to estimate decoy-state parameters for a passive protocol with an arbitrary experimental distribution of intensity. We compare this analysis with the original method and show that the proposed technique can provide higher key generation rates.


Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 544
Author(s):  
Argiris Ntanos ◽  
Nikolaos K. Lyras ◽  
Dimitris Zavitsanos ◽  
Giannis Giannoulis ◽  
Athanasios D. Panagopoulos ◽  
...  

Quantum key distribution (QKD) has gained a lot of attention over the past few years, but the implementation of quantum security applications is still challenging to accomplish with the current technology. Towards a global-scale quantum-secured network, satellite communications seem to be a promising candidate to successfully support the quantum communication infrastructure (QCI) by delivering quantum keys to optical ground terminals. In this research, we examined the feasibility of satellite-to-ground QKD under daylight and nighttime conditions using the decoy-state BB84 QKD protocol. We evaluated its performance on a hypothetical constellation with 10 satellites in sun-synchronous Low Earth Orbit (LEO) that are assumed to communicate over a period of one year with three optical ground stations (OGSs) located in Greece. By taking into account the atmospheric effects of turbulence as well as the background solar radiance, we showed that positive normalized secure key rates (SKRs) up to 3.9×10−4 (bps/pulse) can be obtained, which implies that satellite-to-ground QKD can be feasible for various conditions, under realistic assumptions in an existing infrastructure.


2021 ◽  
Vol 64 (12) ◽  
Author(s):  
Xin Liu ◽  
Zijian Li ◽  
Di Luo ◽  
Chunfeng Huang ◽  
Di Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document