western tethys
Recently Published Documents


TOTAL DOCUMENTS

248
(FIVE YEARS 57)

H-INDEX

31
(FIVE YEARS 3)

2022 ◽  
pp. SP521-2021-149
Author(s):  
Xiangdong Zhao ◽  
Daran Zheng ◽  
He Wang ◽  
Yanan Fang ◽  
Naihua Xue ◽  
...  

AbstractThe Oceanic Anoxic Event (OAE) 1b is well documented in western Tethys, however, records in Eurasia are still lacking. Here, we carried out high-resolution organic carbon isotope (δ13Corg), total organic carbon (TOC) contents and mercury (Hg) concentrations analysis of the lacustrine sediments from the Xiagou and Zhonggou formations in the Hanxiagou section, Jiuquan Basin, northwestern China. The lacustrine δ13Corg curve presents three stages of negative excursions above the basalt layer dated at 112.4 ± 0.3 Ma in the lowermost Zhonggou Formation. The three negative δ13Corg excursions, well corresponded with the three subevents (Kilian, Paquier, and Leenhardt) of the OAE1b in Poggio le Guaine (central Italy), Vocontian Basin (SE France) and St Rosa Canyon (NE Mexico) sections, supporting the record of the terrestrial OAE 1b in the Jiuquan Basin. Five mercury enrichment (ME) intervals in Hg/TOC ratios were recognized, indicating that the pulsed volcanism from the southern Kerguelen Plateau likely triggered the OAE 1b. However, the decoupling between NIE shifts and mercury enrichments signifying other carbon reservoir (with no link to mercury) probably contributed to the global carbon cycle perturbation during the OAE 1b period. Our results provide direct evidence to link the OAE 1b and terrestrial ecosystem in the Eurasia.


Geodiversitas ◽  
2021 ◽  
Vol 43 (22) ◽  
Author(s):  
Raphaël Vasseur ◽  
Bernard Lathuilière
Keyword(s):  

Solid Earth ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 2255-2275
Author(s):  
Sonia Yeung ◽  
Marnie Forster ◽  
Emmanuel Skourtsos ◽  
Gordon Lister

Abstract. The Late Cretaceous Asteroussia event as recorded in the Cyclades is a potential key to the tectonic evolution of Western Tethys. Microstructural analysis and 40Ar/39Ar geochronology on garnet–mica schists and the underlying granitoid basement terrane on the island of Ios demonstrates evidence of a Late Cretaceous high-pressure, medium-temperature (HP–MT) metamorphic event. This suggests that the Asteroussia crystalline nappe on Crete extended northward to include these Gondwanan tectonic slices. In this case, the northern part of the Asteroussia nappe (on Ios) is overlain by the terrane stack defined by the individual slices of the Cycladic Eclogite–Blueschist Unit, whereas in the south (in Crete) the Asteroussia slices are near the top of a nappe stack defined by the individual tectonic units of the external Hellenides. This geometry implies that accretion of the Ios basement terrane involved a significant leap of the subduction megathrust (250–300 km) southward. Accretion needs to have commenced at or about ∼38 Ma, when the already partially exhumed slices of the Cycladic Eclogite–Blueschist Unit began to thrust over the Ios basement. By ∼35–34 Ma, the subduction jump had been accomplished, and renewed rollback began the extreme extension that led to the exhumation of the Ios metamorphic core complex.


Facies ◽  
2021 ◽  
Vol 67 (4) ◽  
Author(s):  
Stephen Kershaw ◽  
Tingshan Zhang ◽  
Yue Li

AbstractPermian–Triassic boundary microbialites (PTBMs) that formed directly after the end-Permian extinction in the South China Block are dominated by one structure, a lobate-form calcium carbonate construction that created extensive very thin (ca. 2–20 m thick) framework biostromes in shallow marine environments, effectively occupying the ecological position of the prior pre-extinction Permian reefs and/or associated carbonates. In the field, vertical sections show the microbialite is dendrolite (branched) and thrombolite (clotted), but because thrombolite may include branched portions, its structure is overall best classed as thrombolite. In the field and in polished blocks, the microbial material appears as dark carbonate embedded in lighter-coloured micritic sediment, where details cannot be seen at that scale. In thin section, in contrast to the largely unaltered micritic matrix, the microbial constructor is preferentially partly to completely recrystallised, but commonly passes gradationally over distances of a few mm to better-preserved areas comprising 0.1–0.2 mm diameter uneven blobs of fine-grained calcium carbonate (micrite to microsparite). The lobate architecture comprises branches, layers and clusters of blobs ca. 1–20 mm in size, and includes constructed cavities with geopetal sediments, cements and some deposited small shelly fossils. Individual blobs in the matrix may be fortuitous tangential cross sections through margins of accumulated masses, but if separate, may represent building blocks of the masses. The lobate structure is recognised here as a unique microbial taxon and named Calcilobes wangshenghaii n. gen., n. sp. Calcilobes reflects its calcium carbonate composition and lobate form, wangshenghaii for the Chinese geologist (Shenghai Wang) who first detailed this facies in 1994. The structure is interpreted as organically built, and may have begun as separate blobs on the sea floor sediment (that was also composed of micrite but is interpreted as mostly inorganic), by microbial agglutination of micrite. Because of its interpreted original micritic–microsparitic nature, classification as either a calcimicrobe (calcified microbial fossil) or a sedimentary microbial structure is problematic, so C. wangshenghaii has uncertain affinity and nature. Calcilobes superficially resembles Renalcis and Tarthinia, which both form small clusters in shallow marine limestones and have similar problems of classification. Nevertheless, Calcilobes framework architecture contrasts both the open branched geometry of Renalcis, and the small tighter masses of Tarthinia, yet it is more similar to Tarthinia than to Renalcis, and may be a modification of Tarthinia, noting that Tarthinia is known from only the Cambrian. Calcilobes thus joins Renalcis, Tarthinia and also Epiphyton (dendritic form) and others, as problematic microbial structures. Calcilobes has not been recognised elsewhere in the geological record and may be unique to the post-end-Permian extinction facies. C. wangshenghaii occurs almost exclusively in the South China Block, which lay on the eastern margin of Tethys Ocean during Permian–Triassic boundary times; reasons for its absence in western Tethys, except for comparable fabrics in one site in Iran and another in Turkey, are unknown.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mina Mazaheri-Johari ◽  
Piero Gianolla ◽  
Tamsin A. Mather ◽  
Joost Frieling ◽  
Daoliang Chu ◽  
...  

AbstractThe Late Triassic Carnian Pluvial Episode (CPE) was a time of biological turnover and environmental perturbations. Within the CPE interval, C-isotope and sedimentary records indicate multiple pulses of depleted carbon into the atmosphere–ocean system linked to discrete enhancements of the hydrological cycle. Data suggest a similar cascade of events to other extinctions, including being potentially driven by emplacement of a large igneous province (LIP). The age of the Wrangellia LIP overlaps that of the CPE, but a direct link between volcanism and the pulsed CPE remains elusive. We present sedimentary Hg concentrations from Western Tethys successions to investigate volcanic activity through the previously established CPE global negative C-isotope excursions (NCIEs). Higher Hg concentrations and Hg/TOC are recorded just before and during NCIEs and siliciclastic inputs. The depositional settings suggest volcanic Hg inputs into the basins over the NCIEs rather than increases of Hg drawdown or riverine transport. Differences in Hg and Hg/TOC signals between the basins might be linked to coeval LIP style or the temporal resolution of the sedimentary successions. Overall, our new data provide support for a link between pulses of Wrangellia LIP volcanism, NCIEs, and humid phases that mark the CPE in the Western Tethys.


2021 ◽  
Vol 353 (1) ◽  
pp. 193-208
Author(s):  
Asmae El Bakili ◽  
Michel Corsini ◽  
Jean-Marc Lardeaux ◽  
Sylvain Gallet ◽  
Philippe Münch ◽  
...  

PalZ ◽  
2021 ◽  
Author(s):  
László Bujtor ◽  
Richárd Albrecht

AbstractRecent discovery of a previously unknown outcrop in the vicinity of the Zengővárkony lime-kilns (Mecsek Mountains, Hungary) provided a few identifiable upper Oxfordian brachiopods that exhibit a truly Mediterranean (Tethyan) character. Dating of the outcrop is based on a rich ammonite fauna: Benetticeras benettii; Trimarginites ex gr. trimarginatus; Orthosphinctes (Orthosphinctes) ex gr. tiziani clearly indicate the Late Oxfordian. The brachiopod fauna indicates a deep-water marine environment and well-oxygenated sea floor. Nucleata bouei and Pygope catulloi are recorded for the first time from the Mecsek Mountains. A pathologic specimen of Pygope catulloi is also recognized. Its ventral valve was injured in an early developmental stage that caused deformation of the left side, which was overgrown by the healthy right side and created an asymmetric adult shell shape. Cause of the injury is unclear but it provides further evidence for subsequent healing of brachiopods after being injured. This is the first description and illustration of Oxfordian brachiopods from the Mecsek Mountains, Hungary. The occurrence of Tethyan originating pygopid brachiopods in the Oxfordian strengthens earlier observations that from the Bathonian/Callovian Tethyan influence became overwhelming in the Mecsek Mountains fauna. Pygope catulloi strengthens records from Algeria that pygopid brachiopods may have occurred very early on the periphery of the Western Tethys.


Facies ◽  
2021 ◽  
Vol 67 (3) ◽  
Author(s):  
Adriano Guido ◽  
Giuseppe Palladino ◽  
Matteo Sposato ◽  
Franco Russo ◽  
Giacomo Prosser ◽  
...  

AbstractThe main goal of the paper is the reconstruction of a Middle Triassic buildup cropping out in the central part of the Southern Apennines. Middle Triassic reefs of the western Tethys realm are well known in the Northern and Southern Alps. In contrast, few studies of the Anisian–Ladinian carbonate platforms of the southern Apennines are available, due to the diagenetic alteration and tectonic disruption that hinder their paleoenvironmental and stratigraphic reconstruction. In an attempt to fill this gap, and to improve the knowledge on the Anisian–Ladinian carbonates of central Mediterranean area, this research is focused on a carbonate buildup cropping out in the “La Cerchiara” area, Sasso di Castalda (Basilicata, Southern Italy). The buildup, affected by intense tectonic deformation associated with the development of the Apennine thrust and fold belt, was studied using a statistical evaluation of the quantitative microfacies data. The research enabled a reconstruction of the original stratigraphic relationships of the various buildup fragments. A positive linear regression between the sample positions vs the percentage of autochthonous carbonates indicates an increase of the autochthons carbonate toward the top of the succession. The allochthonous fabrics (packstone/wackestone) at the base of the section (Unit IIIa) pass gradually upward into autochthonous (boundstones) facies (Units IIIb, I), consisting of microbialites (clotted peloidal micrite, microbial-derived laminae, and aphanitic micrite), microproblematica and cyanobacterial crusts, with few encrusting skeletal organisms. Statistical data suggest that units IIIa, IIIb, and I are in stratigraphic order while unit II appears to have been moved by tectonic dislocation from its original position at the base of the succession. The absence of metazoan reef framework, and the richness of micro-encrusters, autochthonous micrite and synsedimentary cements, suggest a mud-mound style of growth for the carbonate bodies of the Southern Apennine during the Anisian.


Sign in / Sign up

Export Citation Format

Share Document