subcellular resolution
Recently Published Documents





2022 ◽  
Hu Zeng ◽  
Jiahao Huang ◽  
Haowen Zhou ◽  
William J. Meilandt ◽  
Borislav Dejanovic ◽  

Amyloid-β plaques and neurofibrillary tau tangles are the neuropathologic hallmarks of Alzheimer's disease (AD), but the spatiotemporal cellular responses and molecular mechanisms underlying AD pathophysiology remain poorly understood. Here we introduce STARmap PLUS to simultaneously map single-cell transcriptional states and disease marker proteins in brain tissues of AD mouse models at subcellular resolution (200 nm). This high-resolution spatial transcriptomics map revealed a core-shell structure where disease-associated microglia (DAM) closely contact amyloid-β plaques, whereas disease-associated astrocytes (DAA) and oligodendrocyte precursor cells (OPC) are enriched in the outer shells surrounding the plaque-DAM complex. Hyperphosphorylated tau emerged mainly in excitatory neurons in the CA1 region accompanied by the infiltration of oligodendrocyte subtypes into the axon bundles of hippocampal alveus. The integrative STARmap PLUS method bridges single-cell gene expression profiles with tissue histopathology at subcellular resolution, providing an unprecedented roadmap to pinpoint the molecular and cellular mechanisms of AD pathology and neurodegeneration.

2022 ◽  
Wei-Chun Tang ◽  
Yen-Ting Liu ◽  
Cheng-Han Yeh ◽  
Yi-Ling Lin ◽  
Yu-Chun Lin ◽  

Lattice lightsheet microscopy (LLSM) is modified with the aim of manipulating cellular behavior with subcellular resolution through three-dimensional (3D) optogenetic activation. In this study, we report a straightforward implementation of the activation source in LLSM in which the stimulating light can be generated by changing the spatial light modulator (SLM) patterns and the annual masks. As a result, a Bessel beam as a stimulation source is integrated into the LLSM without changing the optical configuration, achieving high spatiotemporal activation. We show that the energy power required for optogenetic reactions is lower than 1 nW (24 mW/cm2) and membrane ruffling can be activated at different locations within a cell with subcellular resolution. We also demonstrate guided cell migration using optogenetic stimulation for up to 6 h with 463 volume imaging without noticeable damage to cells.

2021 ◽  
Vol 12 ◽  
Kenneth W. Dunn

The scale and complexity of images collected in biological microscopy have grown enormously over the past 30 years. The development and commercialization of multiphoton microscopy has promoted a renaissance of intravital microscopy, providing a window into cell biology in vivo. New methods of optical sectioning and tissue clearing now enable biologists to characterize entire organs at subcellular resolution. New methods of multiplexed imaging support simultaneous localization of forty or more probes at a time. Exploiting these exciting new techniques has increasingly required biomedical researchers to master procedures of image analysis that were once the specialized province of imaging experts. A primary goal of the Indiana O’Brien Center has been to develop robust and accessible image analysis tools for biomedical researchers. Here we describe biomedical image analysis software developed by the Indiana O’Brien Center over the past 25 years.

2021 ◽  
Yao L. Wang ◽  
Erik L. Jaklitsch ◽  
Noa W. F. Grooms ◽  
Leilani G. Schulting ◽  
Samuel H. Chung

Imaging, visual screens, and optical surgery are frequently applied to the nematode Caenorhabditis elegans at subcellular resolution for in vivo biological research. However, these approaches remain low-throughput and require significant manual effort. To improve throughput and enable automation in these techniques, we implement a novel cooling method to immobilize C. elegans directly on their cultivation plate. Previous studies cooled animals in microfluidics or flooded wells to 1-4 C. Counterintuitively, we find that cooling to 5-7 C immobilizes animals more effectively than lower temperatures. At 6 C, animal movement consists of bouts of submicron nose tip movement occurring at a sufficiently low magnitude and frequency to permit clear imaging. We demonstrate the ability to perform subcellular-resolution fluorescence imaging, including 64x magnification 3D image stacks and 2-min long timelapse recordings of the ASJ neuron without blurring from animal motion. We also observe no long-term side effects from cooling immobilization on animal lifespan or fecundity. We believe our cooling method enables high-throughput and high-resolution microscopy with no chemical or mechanical interventions.

2021 ◽  
Vol 12 (1) ◽  
Che-Hang Yu ◽  
Jeffrey N. Stirman ◽  
Yiyi Yu ◽  
Riichiro Hira ◽  
Spencer L. Smith

AbstractImaging the activity of neurons that are widely distributed across brain regions deep in scattering tissue at high speed remains challenging. Here, we introduce an open-source system with Dual Independent Enhanced Scan Engines for Large field-of-view Two-Photon imaging (Diesel2p). Combining optical design, adaptive optics, and temporal multiplexing, the system offers subcellular resolution over a large field-of-view of ~25 mm2, encompassing distances up to 7 mm, with independent scan engines. We demonstrate the flexibility and various use cases of this system for calcium imaging of neurons in the living brain.

Vytautas Kučikas ◽  
Maximilian P. Werner ◽  
Thomas Schmitz-Rode ◽  
Frédéric Louradour ◽  
Marc A. M. J. van Zandvoort

Abstract In recent years, the demand for non-destructive deep-tissue imaging modalities has led to interest in multiphoton endoscopy. In contrast to bench top systems, multiphoton endoscopy enables subcellular resolution imaging in areas not reachable before. Several groups have recently presented their development towards the goal of producing user friendly plug and play system, which could be used in biological research and, potentially, clinical applications. We first present the technological challenges, prerequisites, and solutions in two-photon endoscopic systems. Secondly, we focus on the applications already found in literature. These applications mostly serve as a quality check of the built system, but do not answer a specific biomedical research question. Therefore, in the last part, we will describe our vision on the enormous potential applicability of adult two-photon endoscopic systems in biological and clinical research. We will thus bring forward the concept that two-photon endoscopy is a sine qua non in bringing this technique to the forefront in clinical applications.

2021 ◽  
Florin Cornelius Walter ◽  
Oliver Stegle ◽  
Britta Velten

Factor analysis is a widely-used method for dimensionality reduction of high-throughput datasets in molecular biology and has recently been adapted to spatial transcriptomics data. However, existing methods assume (count) matrices as input and are therefore not directly applicable to single-molecule resolved data, which increasingly arise for example from multiplexed fluorescence in-situ hybridization or in-situ sequencing experiments. To address this, we here propose FISHFactor, a probabilistic model that combines the benefits of spatial, non-negative factor analysis with a Poisson point process likelihood to explicitly model and account for the nature of single-molecule resolved data. FISHFactor furthermore leverages principles of multi-modal factor analysis to enable dissecting the transcriptional heterogeneity between multiple groups of samples, such as different cells. Using simulated and real data, we show that our approach leads to improved estimates of the true spatial transcriptome landscape compared to existing methods that rely on aggregating information by spatial binning. Applied to a set of NIH/3T3 cells, FISHFactor identifies major subcellular expression patterns and accurately recovers known spatial gene clusters.

2021 ◽  
Shanshan He ◽  
Ruchir Bhatt ◽  
Brian Birditt ◽  
Carl Brown ◽  
Emily Brown ◽  

Spatial Molecular Imager (SMI) is an automated microscope imaging system with microfluidic reagent cycling, for high-plex, spatial in-situ detection of multiomic targets (RNA and protein) on FFPE and other intact samples with subcellular resolution. The key attributes of the CosMx™ SMI platform (NanoString®, Seattle, WA) include: 1) high-plex and high-sensitivity imaging chemistry that works for both RNA and protein detection, 2) three-dimensional subcellular-resolution image analysis with a target localization accuracy of ~50 nm in the XY plane, 3) large Hamming-distance encoding scheme with low error rate (0.0092 false calls per cell per gene) and low background (~ 0.04 counts per cell per gene), 4) high-throughput (up to 1 million cells per sample, four samples per run), 5) antibody-based cell segmentation methods, and 6) compatibility with formalin-fixed, paraffin-embedded (FFPE) samples. In this study, 980 RNAs and 80 proteins were measured at subcellular resolution in FFPE cultured cell pellets, as well as FFPE tissues from biobanked samples of non-small cell lung cancer (NSCLC) and breast cancer. Cross-platform analysis using 16 cancer cell lines validated high-correlation (R2 ~0.77) and high sensitivity (~1.44 FPKM/TPM; roughly 1 to 2 copies of RNA per cell) when compared to RNA-seq. Real-world archived NSCLC FFPE tumor sections revealed greater than 94% cell detection efficiency for RNA, despite the low RNA quality QV200 20% to the medium quality 65%. The accuracy of protein expression measurements was independent of the level of multiplexing, as demonstrated by the linear behavior of nested multiplexing panels (R2 > 0.9). At 980-plex RNA detection, data analysis allowed identification of over 18 distinct cell types, at least 10 unique tumor microenvironment neighborhoods, and over 100 pairwise ligand-receptor interactions. Data from 8 NSCLC samples comprising over 800,000 single cells and ~260 million transcripts are released into the public domain ( to allow for extended data analysis by the entire spatial biology research community.

2021 ◽  
Stephan Preibisch ◽  
Ella Bahry ◽  
Laura Breimann ◽  
Marwan Zouinkhi ◽  
Leo Epstein ◽  

Abstract Fluorescent in-situ hybridization (FISH)-based methods are powerful tools to study molecular processes with subcellular resolution, relying on accurate identification and localization of diffraction-limited spots in microscopy images. We developed the Radial Symmetry-FISH (RS-FISH) software that accurately, robustly, and quickly detects single-molecule spots in two and three dimensions, making it applicable to several key assays, including single-molecule FISH (smFISH), spatial transcriptomics, and spatial genomics. RS-FISH allows interactive parameter tuning and scales to large sets of images as well as tera-byte sized image volumes such as entire brain scans using straight-forward distributed processing on workstations, clusters, and in the cloud.

2021 ◽  
Vol 31 (10) ◽  
pp. 1706-1718 ◽  
Ruben Dries ◽  
Jiaji Chen ◽  
Natalie del Rossi ◽  
Mohammed Muzamil Khan ◽  
Adriana Sistig ◽  

Spatial transcriptomics is a rapidly growing field that promises to comprehensively characterize tissue organization and architecture at the single-cell or subcellular resolution. Such information provides a solid foundation for mechanistic understanding of many biological processes in both health and disease that cannot be obtained by using traditional technologies. The development of computational methods plays important roles in extracting biological signals from raw data. Various approaches have been developed to overcome technology-specific limitations such as spatial resolution, gene coverage, sensitivity, and technical biases. Downstream analysis tools formulate spatial organization and cell–cell communications as quantifiable properties, and provide algorithms to derive such properties. Integrative pipelines further assemble multiple tools in one package, allowing biologists to conveniently analyze data from beginning to end. In this review, we summarize the state of the art of spatial transcriptomic data analysis methods and pipelines, and discuss how they operate on different technological platforms.

Sign in / Sign up

Export Citation Format

Share Document