human cancer cell lines
Recently Published Documents


TOTAL DOCUMENTS

1728
(FIVE YEARS 530)

H-INDEX

69
(FIVE YEARS 9)

2022 ◽  
Vol 20 (2) ◽  
pp. 345-350
Author(s):  
Wesam M. Salama ◽  
Sabry A. El-Naggar

Purpose: In this study, the cytotoxicity of scorpion Leurius quinquestratus crude venom (LQCV) was evaluated in vitro in selected human cancer cell lines. Methods: Breast (MCF-7), hepatocellular (HepG-2), colon (CaCo-2), cervix (HeLa) and alveolar (A-549) adenocarcinoma cell lines were tested. MTT assay and median inhibition concentration (IC50), apoptotic assay, caspase 3, P53, Bcl-2 proteins and cell cycle were determined. Results: 24 hrs post-treatment, CaCo-2 represented the most sensitive cell line (IC50 of 4.12 μg/mL). Due to the exposure to 1/10 IC50 of LQCV, the percentage of the apoptotic cells, caspase 3, and P53 proteins were increased significantly (P<0.05) while Bcl-2 was decreased in comparison to untreated cells. Treatment with LQCV induced cell cycle arrest at G1 and G2/M phases. Conclusion: LQCV displays potent cytotoxicity against selected human cell lines in vitro. Thus, the material could become a potent agent for the management of some cancers.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 254
Author(s):  
Denisse A. Gutierrez ◽  
Lisett Contreras ◽  
Paulina J. Villanueva ◽  
Edgar A. Borrego ◽  
Karla Morán-Santibañez ◽  
...  

In this study, we identified a novel pyrazole-based derivative (P3C) that displayed potent cytotoxicity against 27 human cancer cell lines derived from different tissue origins with 50% cytotoxic concentrations (CC50) in the low micromolar and nanomolar range, particularly in two triple-negative breast cancer (TNBC) cell lines (from 0.25 to 0.49 µM). In vitro assays revealed that P3C induces reactive oxygen species (ROS) accumulation leading to mitochondrial depolarization and caspase-3/7 and -8 activation, suggesting the participation of both the intrinsic and extrinsic apoptotic pathways. P3C caused microtubule disruption, phosphatidylserine externalization, PARP cleavage, DNA fragmentation, and cell cycle arrest on TNBC cells. In addition, P3C triggered dephosphorylation of CREB, p38, ERK, STAT3, and Fyn, and hyperphosphorylation of JNK and NF-kB in TNBC cells, indicating the inactivation of both p38MAPK/STAT3 and ERK1/2/CREB signaling pathways. In support of our in vitro assays, transcriptome analyses of two distinct TNBC cell lines (MDA-MB-231 and MDA-MB-468 cells) treated with P3C revealed 28 genes similarly affected by the treatment implicated in apoptosis, oxidative stress, protein kinase modulation, and microtubule stability.


2022 ◽  
Author(s):  
Dong Hyun Kim ◽  
Zahra Khan ◽  
Sun Yeou Kim ◽  
Sang Un Choi ◽  
Chung Sub Kim ◽  
...  

Glechoma hederacea var. longituba (common name: ground-ivy) has been used for the treatment of asthma, bronchitis, cholelithiasis, colds, and inflammation. In the present study, three new sesquiterpene glycosides (1–3), two new diterpene glycosides (4–5), and four known compounds (6–9) were isolated from its MeOH extract. Structure elucidation was performed for the five new compounds (1–5) using 1D and 2D NMR, HRESIMS, ECD calculation, and chemical methods. All the isolates (1–9) were assessed for their anti-neuroinflammatory activity on nitric oxide (NO) production in lipopolysaccharide (LPS)-activated BV-2 cells, nerve growth factor (NGF) secretion stimulation activity in C6 glioma cells, and cytotoxic activity against four human cancer cell lines (A549, SK-OV-3, SK-MEL-2, and HCT15). Compounds 2 and 5–7 exhibited inhibitory effects on NO production with IC50 values of 52.21, 47.90, 61.61, and 25.35 μM, respectively. Compound 5 also exhibited a significant stimulating effect on NGF secretion (122.77 ± 8.10%). Compound 9 showed potent cytotoxic activity against SK-OV-3 (IC50 3.76 μM) and SK-MEL-2 (IC50 1.48 μM) cell lines, while 7 displayed a strong cytotoxic activity against SK-MEL-2 (IC50 9.81 μM) cell line


Author(s):  
Aisha Nawaz ◽  
Amina Arif ◽  
Adil Jamal ◽  
Muhammad Naveed Shahid ◽  
Ibtesam Nomani ◽  
...  

Abstract Molecules isolated and identified from plant origin are used to manufacture most chemotherapeutic drugs for cancer treatment. We assumed that these plant extracts contain prolific bioactive compounds with potent antiproliferative activities and could be effective against different human cancer cells. Ethanolic extracts were prepared from Chelidonium majus, Myrica cerifera, Fumaria indica, Nigella sativa, and Silybum marianum, and the antiproliferative assay was performed in HepG2 and HeLa human cancer cell lines. All plants extract exhibited antiproliferative potential against studied cancer cell lines in the dose and time-dependent manner. Chelidonium majus and Silybum marianum have shown promising results against HepG2 and HeLa cells, respectively, followed by Myrica cerifera, Fumaria indica, and Nigella sativa. Results indicated that utilization of whole plant extract as anticancer compounds could be of great value in generating novel chemotherapeutic drugs.


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 293
Author(s):  
Hesham Haffez ◽  
Shimaa Osman ◽  
Hassan Y. Ebrahim ◽  
Zeinab A. Hassan

In vitro anti-proliferative activity of Pinus palustris extract and its purified abietic acid was assessed against different human cancer cell lines (HepG-2, MCF-7 and HCT-116) compared to normal WI-38 cell line. Abietic acid showed more promising IC50 values against MCF-7 cells than pine extract (0.06 µg/mL and 0.11 µM, respectively), with insignificant cytotoxicity toward normal fibroblast WI-38 cells. Abietic acid triggered both G2/M cell arrest and subG0-G1 subpopulation in MCF-7, compared to SubG0-G1 subpopulation arrest only for the extract. It also induced overexpression of key apoptotic genes (Fas, FasL, Casp3, Casp8, Cyt-C and Bax) and downregulation of both proliferation (VEGF, IGFR1, TGF-β) and oncogenic (C-myc and NF-κB) genes. Additionally, abietic acid induced overexpression of cytochrome-C protein. Furthermore, it increased levels of total antioxidants to diminish carcinogenesis and chemotherapy resistance. P. palustris is a valuable source of active abietic acid, an antiproliferative agent to MCF-7 cells through induction of apoptosis with promising future anticancer agency in breast cancer therapy.


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 284
Author(s):  
Abdelhakim Bouyahya ◽  
Aicha El Allam ◽  
Ikrame Zeouk ◽  
Douae Taha ◽  
Gokhan Zengin ◽  
...  

Grifolin is a volatile compound contained in essential oils of several medicinal plants. Several studies show that this substance has been the subject of numerous pharmacological investigations, which have yielded interesting results. Grifolin demonstrated beneficial effects for health via its multiple pharmacological activities. It has anti-microbial properties against bacteria, fungi, and parasites. In addition, grifolin exhibited remarkable anti-cancer effects on different human cancer cells. The anticancer action of this molecule is related to its ability to act at cellular and molecular levels on different checkpoints controlling the signaling pathways of human cancer cell lines. Grifolin can induce apoptosis, cell cycle arrest, autophagy, and senescence in these cells. Despite its major pharmacological properties, grifolin has only been investigated in vitro and in vivo. Therefore, further investigations concerning pharmacodynamic and pharmacokinetic tests are required for any possible pharmaceutical application of this substance. Moreover, toxicological tests and other investigations involving humans as a study model are required to validate the safety and clinical applications of grifolin.


2021 ◽  
Vol 1 ◽  
pp. 10-15
Author(s):  
Maddaly Ravi ◽  
Aishwarya Pargaonkar ◽  
Anuradha Ramesh ◽  
Gatika Agrawal ◽  
Jennifer Sally ◽  
...  

Objectives: Three-dimensional (3D) printing has gained significance for human health-care applications in recent years. Some of these applications include obtaining models which mimic anatomical parts. One other parallel development in the biological research area is the development of 3D cell cultures. Such cultures are now becoming the material of choice for in vitro experiments, fast replacing the traditional adherent/monolayer 2D culture approaches. We present here, a method to obtain 3D prints of 3D aggregates of three human cancer cell lines. Such 3D prints can be useful models to understand solid tumor morphologies and also as effective teaching models. Materials and Methods: Photomicrographs of the 3D aggregates of the human cancer cell lines SiHa, MCF-7, and A549 (human cervical cancer, breast cancer, and non-small cell lung cancer cell lines, respectively) were obtained using inverted phase contrast microscopy. Conversion of normal jpeg images into 3D files was performed using the lithophane method and CAD files obtained. The CAD files thus generated were used to print the objects using the Stratasys Polyjet J750 3D Printer. Results: We could obtain 3D prints of SiHa, MCF-7, and A549 (human cervical cancer, breast cancer, and non-small cell lung cancer cell lines, respectively) 3D aggregates/spheroids. Conclusion: It is hoped that this approach will be useful for studying solid tumor morphologies in finer details. Furthermore, other benefits of such 3D prints would be in them being excellent models for teaching purposes.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7609
Author(s):  
Jade Dussart-Gautheret ◽  
Julia Deschamp ◽  
Thibaut Legigan ◽  
Maelle Monteil ◽  
Evelyne Migianu-Griffoni ◽  
...  

This paper reports on the synthesis of new hydroxymethylene-(phosphinyl)phosphonates (HMPPs). A methodology has been developed to propose an optimized one-pot procedure without any intermediate purifications. Various aliphatic and (hetero)aromatic HMPPs were synthesized in good to excellent yields (53–98%) and the influence of electron withdrawing/donating group substitution on aromatic substrates was studied. In addition, the one-pot synthesis of HMPP was monitored by 31P NMR spectroscopy, allowing effective control of the end of the reaction and identification of all phosphorylated intermediate species, which enabled us to propose a reaction mechanism. Optimized experimental conditions were applied to the preparation of biological relevant aminoalkyl-HMPPs. A preliminary study of the complexation to hydroxyapatite (bone matrix) was carried out in order to verify its lower affinity towards bone compared to bisphosphonate molecules. Moreover, in vitro anti-tumor activity study revealed encouraging antiproliferative activities on three human cancer cell lines (breast, pancreas and lung).


Sign in / Sign up

Export Citation Format

Share Document