triggered release
Recently Published Documents


TOTAL DOCUMENTS

818
(FIVE YEARS 241)

H-INDEX

75
(FIVE YEARS 9)

Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 281
Author(s):  
Li Li ◽  
Dongyu Lei ◽  
Jiaojiao Zhang ◽  
Lu Xu ◽  
Jiashan Li ◽  
...  

Intelligent stimulus-triggered release and high drug-loading capacity are crucial requirements for drug delivery systems in cancer treatment. Based on the excessive intracellular GSH expression and pH conditions in tumor cells, a novel glutathione (GSH) and pH dual-responsive hydrogel was designed and synthesized by conjugates of glutamic acid-cysteine dendrimer with alginate (Glu-Cys-SA) through click reaction, and then cross-linked with polyethylene glycol (PEG) through hydrogen bonds to form a 3D-net structure. The hydrogel, self-assembled by the inner disulfide bonds of the dendrimer, is designed to respond to the GSH heterogeneity in tumors, with a remarkably high drug loading capacity. The Dox-loaded Glu-Cys-SA hydrogel showed controlled drug release behavior, significantly with a release rate of over 76% in response to GSH. The cytotoxicity investigation indicated that the prepared DOX-loaded hydrogel exhibited comparable anti-tumor activity against HepG-2 cells with positive control. These biocompatible hydrogels are expected to be well-designed GSH and pH dual-sensitive conjugates or polymers for efficient anticancer drug delivery.


Pharmaceutics ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 65
Author(s):  
Ivan A. Burmistrov ◽  
Maxim M. Veselov ◽  
Alexander V. Mikheev ◽  
Tatiana N. Borodina ◽  
Tatiana V. Bukreeva ◽  
...  

Nanosystems for targeted delivery and remote-controlled release of therapeutic agents has become a top priority in pharmaceutical science and drug development in recent decades. Application of a low frequency magnetic field (LFMF) as an external stimulus opens up opportunities to trigger release of the encapsulated bioactive substances with high locality and penetration ability without heating of biological tissue in vivo. Therefore, the development of novel microencapsulated drug formulations sensitive to LFMF is of paramount importance. Here, we report the result of LFMF-triggered release of the fluorescently labeled dextran from polyelectrolyte microcapsules modified with magnetic iron oxide nanoparticles. Polyelectrolyte microcapsules were obtained by a method of sequential deposition of oppositely charged poly(allylamine hydrochloride) (PAH) and poly(sodium 4-styrenesulfonate) (PSS) on the surface of colloidal vaterite particles. The synthesized single domain maghemite nanoparticles integrated into the polymer multilayers serve as magneto-mechanical actuators. We report the first systematic study of the effect of magnetic field with different frequencies on the permeability of the microcapsules. The in situ measurements of the optical density curves upon the 100 mT LFMF treatment were carried out for a range of frequencies from 30 to 150 Hz. Such fields do not cause any considerable heating of the magnetic nanoparticles but promote their rotating-oscillating mechanical motion that produces mechanical forces and deformations of the adjacent materials. We observed the changes in release of the encapsulated TRITC-dextran molecules from the PAH/PSS microcapsules upon application of the 50 Hz alternating magnetic field. The obtained results open new horizons for the design of polymer systems for triggered drug release without dangerous heating and overheating of tissues.


Gels ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 15
Author(s):  
Sabdat Ozichu Ekama ◽  
Margaret O. Ilomuanya ◽  
Chukwuemeka Paul Azubuike ◽  
James Babatunde Ayorinde ◽  
Oliver Chukwujekwu Ezechi ◽  
...  

The challenges encountered with conventional microbicide gels has necessitated the quest for alternative options. This study aimed to formulate and evaluate a bigel and thermosensitive gel, designed to combat the challenges of leakage and short-residence time in the vagina. Ionic-gelation technique was used to formulate maraviroc and tenofovir microspheres. The microspheres were incorporated into a thermosensitive gel and bigel, then evaluated. Enzyme degradation assay was used to assess the effect of the acid phosphatase enzyme on the release profile of maraviroc and tenofovir microspheres. HIV efficacy and cytotoxicity of the microspheres were assessed using HIV-1-BaL virus strain and HeLa cell lines, respectively. Maraviroc and tenofovir release kinetics followed zero-order and Higuchi model kinetics. However, under the influence of the enzyme, maraviroc release was governed by first-order model, while tenofovir followed a super case II transport-mechanism. The altered mode of release and drug transport mechanism suggests a triggered release. The assay of the microspheres suspension on the HeLa cells did not show signs of cytotoxicity. The thermosensitive gel and bigel elicited a progressive decline in HIV infectivity, until at concentrations of 1 μg/mL and 0.1 μg/mL, respectively. The candidate vaginal gels have the potential for a triggered release by the acid phosphatase enzyme present in the seminal fluid, thus, serving as a strategic point to prevent HIV transmission.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7913
Author(s):  
Sonyabapu Yadav ◽  
Kalyan Ramesh ◽  
Parveen Kumar ◽  
Sung-Han Jo ◽  
Seong II Yoo ◽  
...  

In the present study, we developed near-infrared (NIR)-responsive shell-crosslinked (SCL) micelles using the Diels–Alder (DA) click reaction between an amphiphilic copolymer poly(d,l-lactide)20-b-poly((furfuryl methacrylate)10-co-(N-acryloylmorpholine)78) (PLA20-b-P(FMA10-co-NAM78)) and a diselenide-containing crosslinker, bis(maleimidoethyl) 3,3′-diselanediyldipropionoate (BMEDSeDP). The PLA20-b-P(FMA10-co-NAM78) copolymer was synthesized by RAFT polymerization of FMA and NAM using a PLA20-macro-chain transfer agent (PLA20-CTA). The DA reaction between BMEDSeDP and the furfuryl moieties in the copolymeric micelles in water resulted in the formation of SCL micelles. The SCL micelles were analyzed by 1H-NMR, FE-SEM, and DLS. An anticancer drug, doxorubicin (DOX), and an NIR sensitizer, indocyanine green (ICG), were effectively incorporated into the SCL micelles during the crosslinking reaction. The DOX/ICG-loaded SCL micelles showed pH- and NIR-responsive drug release, where burst release was observed under NIR laser irradiation. The in vitro cytotoxicity analysis demonstrated that the SCL was not cytotoxic against normal HFF-1 cells, while DOX/ICG-loaded SCL micelles exhibited significant antitumor activity toward HeLa cells. Thus, the SCL micelles of PLA20-b-P(FMA10-co-NAM78) can be used as a potential delivery vehicle for the controlled drug release in cancer therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Murad Abusukhun ◽  
Martin S. Winkler ◽  
Stefan Pöhlmann ◽  
Onnen Moerer ◽  
Konrad Meissner ◽  
...  

Effective treatment strategies for severe coronavirus disease (COVID-19) remain scarce. Hydrolysis of membrane-embedded, inert sphingomyelin by stress responsive sphingomyelinases is a hallmark of adaptive responses and cellular repair. As demonstrated in experimental and observational clinical studies, the transient and stress-triggered release of a sphingomyelinase, SMPD1, into circulation and subsequent ceramide generation provides a promising target for FDA-approved drugs. Here, we report the activation of sphingomyelinase-ceramide pathway in 23 intensive care patients with severe COVID-19. We observed an increase of circulating activity of sphingomyelinase with subsequent derangement of sphingolipids in serum lipoproteins and from red blood cells (RBC). Consistent with increased ceramide levels derived from the inert membrane constituent sphingomyelin, increased activity of acid sphingomyelinase (ASM) accurately distinguished the patient cohort undergoing intensive care from healthy controls. Positive correlational analyses with biomarkers of severe clinical phenotype support the concept of an essential pathophysiological role of ASM in the course of SARS-CoV-2 infection as well as of a promising role for functional inhibition with anti-inflammatory agents in SARS-CoV-2 infection as also proposed in independent observational studies. We conclude that large-sized multicenter, interventional trials are now needed to evaluate the potential benefit of functional inhibition of this sphingomyelinase in critically ill patients with COVID-19.


2021 ◽  
Vol 22 (24) ◽  
pp. 13556
Author(s):  
Noa Barak-Broner ◽  
Dafna Singer-Lahat ◽  
Dodo Chikvashvili ◽  
Ilana Lotan

The polybasic juxtamembrane region (5RK) of the plasma membrane neuronal SNARE, syntaxin1A (Syx), was previously shown by us to act as a fusion clamp in PC12 cells, as charge neutralization of 5RK promotes spontaneous and inhibits Ca2+-triggered release. Using a Syx-based FRET probe (CSYS), we demonstrated that 5RK is required for a depolarization-induced Ca+2-dependent opening (close-to-open transition; CDO) of Syx, which involves the vesicular SNARE synaptobrevin2 and occurs concomitantly with Ca2+-triggered release. Here, we investigated the mechanism underlying the CDO requirement for 5RK and identified phosphorylation of Syx at Ser-14 (S14) by casein kinase 2 (CK2) as a crucial molecular determinant. Thus, following biochemical verification that both endogenous Syx and CSYS are constitutively S14 phosphorylated in PC12 cells, dynamic FRET analysis of phospho-null and phospho-mimetic mutants of CSYS and the use of a CK2 inhibitor revealed that the S14 phosphorylation confers the CDO requirement for 5RK. In accord, amperometric analysis of catecholamine release revealed that the phospho-null mutant does not support Ca2+-triggered release. These results identify a functionally important CK2 phosphorylation of Syx that is required for the 5RK-regulation of CDO and for concomitant Ca2+-triggered release. Further, also spontaneous release, conferred by charge neutralization of 5RK, was abolished in the phospho-null mutant.


2021 ◽  
Author(s):  
Peidong Wu ◽  
Jingjing Gao ◽  
Priyaa Prasad ◽  
Kingshuk Dutta ◽  
Pintu Kanjilal ◽  
...  

Author(s):  
Ruhani Sagar ◽  
Jinchao Lou ◽  
Alexa J. Watson ◽  
Michael D. Best
Keyword(s):  

2021 ◽  
Vol 328 ◽  
pp. 111458
Author(s):  
Mariangela Bellusci ◽  
Andrea Masi ◽  
Martin Albino ◽  
Davide Peddis ◽  
Michele Petrecca ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
pp. 14-22
Author(s):  
Dexuan Xiao ◽  
Ronghui Zhou

Cancer is the disease with the highest mortality rate, which poses a great threat to people’s lives. Cancer caused approximately 3.4 million death worldwide annually. Surgery, chemotherapy and radiotherapy are the main therapeutic methods in clinical practice. However, surgery is only suitable for patients with early-stage cancers, and chemotherapy as well as radiotherapy have various side effects, both of which limit the application of available therapeutic methods. In 1965, liposome was firstly developed to form new drug delivery systems given the unique properties of nanoparticles, such as enhanced permeability and retention effect. During the last 5 decades, liposome has been widely used for the purpose of anticancer drug delivery, and several advances have been made regarding liposomal technology, including long-circulating liposomes, active targeting liposomes and triggered release liposomes, while problems exist all along. This review introduced the advances as well as the problems during the development of liposomal nanosystems for cancer therapy in recent years.


Sign in / Sign up

Export Citation Format

Share Document