indoor environments
Recently Published Documents


TOTAL DOCUMENTS

2898
(FIVE YEARS 1049)

H-INDEX

74
(FIVE YEARS 15)

2022 ◽  
Vol 8 (2) ◽  
pp. 1-27
Author(s):  
Qiang Tang

In the current COVID-19 pandemic, manual contact tracing has been proven to be very helpful to reach close contacts of infected users and slow down spread of the virus. To improve its scalability, a number of automated contact tracing (ACT) solutions have been proposed, and some of them have been deployed. Despite the dedicated efforts, security and privacy issues of these solutions are still open and under intensive debate. In this article, we examine the ACT concept from a broader perspective, by focusing on not only security and privacy issues but also functional issues such as interface, usability, and coverage. We first elaborate on these issues and particularly point out the inevitable privacy leakages in existing Bluetooth Low Energy based ACT solutions, including centralized and decentralized ones. In addition, we examine the existing venue-based ACT solutions and identify their privacy and security concerns. Then, we propose a generic venue-based ACT solution and a concrete instantiation based on Bluetooth Low Energy technology. Our solution monitors users’ contacting history only in virus-spreading-prone venues and offers higher-level protection for both security and privacy than its predecessors. Finally, we evaluate our solution from security, privacy, and efficiency perspectives, and also highlight how to reduce false positives in some specific indoor environments.


Author(s):  
Omar Ibrahim Mustafa ◽  
Hawraa Lateef Joey ◽  
Noor Abd AlSalam ◽  
Ibrahim Zeghaiton Chaloob

Wireless fidelity (Wi-Fi) is common technology for indoor environments that use to estimate required distances, to be used for indoor localization. Due to multiple source of noise and interference with other signal, the receive signal strength (RSS) measurements unstable. The impression about targets environments should be available to estimate accurate targets location. The Wi-Fi fingerprint technique is widely implemented to build database matching with real data, but the challenges are the way of collect accurate data to be the reference and the impact of different environments on signals measurements. In this paper, optimum system proposed based on modify nearest point (MNP). To implement the proposal, 78 points measured to be the reference points recorded in each environment around the targets. Also, the case study building is separated to 7 areas, where the segmentation of environments leads to ability of dynamic parameters assignments. Moreover, database based on optimum data collected at each time using 63 samples in each point and the average will be final measurements. Then, the nearest point into specific environment has been determined by compared with at least four points. The results show that the errors of indoor localization were less than (0.102 m).


2022 ◽  
Author(s):  
Rachael Dal Porto ◽  
Monet Kunz ◽  
Theresa Pisotchini ◽  
Richard L Corsi ◽  
Christopher D Cappa

Air filtration serves to reduce concentrations of particles in indoor environments. Most standalone, also referred to as portable or in-room, air filtration systems use HEPA filters, and cost generally scales with the clean air delivery rate. A 'do-it-yourself' lower-cost alternative, known as the Corsi-Rosenthal Box, that uses MERV-13 filters coupled with a box fan has been recently proposed, but lacks systematic performance characterization. We have characterized the performance of a five-panel Corsi-Rosenthal air filter. Measurements of size-resolved and overall decay rates of aerosol particles larger than 0.5 microns emitted into rooms of varying size with and without the air filter allowed for determination of the apparent clean air delivery rate, both as a function of size and integrated across particle sizes. The measurements made in the different rooms produced similar results, demonstrating the robustness of the method used. The size-integrated apparent clean air delivery rate increases with fan speed, from about 600 to 850 ft3 min-1 (1019 to 1444 m3 h-1). Overall, our results demonstrate that the Corsi-Rosenthal filter efficiently reduces suspended particle concentrations in indoor environments.


Author(s):  
Letícia Carneiro de Souza ◽  
Celso Henrique de Souza Lopes ◽  
Rita de Cassia Carlleti dos Santos ◽  
Arismar Cerqueira Sodré Junior ◽  
Luciano Leonel Mendes

The millimeter-waves band will enable multi-gigabit data transmission due to the large available bandwidth and it is a promising solution for the spectrum scarcity below 6 GHz in future generations of mobile networks. In particular, the 60 GHz band will play a crucial role in providing high-capacity data links for indoor applications. In this context, this tutorial presents a comprehensive review of indoor propagation models operating in the 60 GHz band, considering the main scenarios of interest. Propagation mechanisms such as reflection, diffraction, scattering, blockage, and material penetration, as well as large-scale path loss, are discussed in order to obtain a channel model for 60 GHz signals in indoor environments. Finally, comparisons were made using data obtained from a measurement campaign available in the literature in order to emphasize the importance of developing accurate channel models for future wireless communication systems operating in millimeter-waves bands.


2022 ◽  
Vol 14 (2) ◽  
pp. 297
Author(s):  
Jingxue Bi ◽  
Hongji Cao ◽  
Yunjia Wang ◽  
Guoqiang Zheng ◽  
Keqiang Liu ◽  
...  

A density-based spatial clustering of applications with noise (DBSCAN) and three distances (TD) integrated Wi-Fi positioning algorithm was proposed, aiming to enhance the positioning accuracy and stability of fingerprinting by the dynamic selection of signal-domain distance to obtain reliable nearest reference points (RPs). Two stages were included in this algorithm. One was the offline stage, where the offline fingerprint database was constructed and the other was the online positioning stage. Three distances (Euclidean distance, Manhattan distance, and cosine distance), DBSCAN, and high-resolution distance selection principle were combined to obtain more reliable nearest RPs and optimal signal-domain distance in the online stage. Fused distance, the fusion of position-domain and signal-domain distances, was applied for DBSCAN to generate the clustering results, considering both the spatial structure and signal strength of RPs. Based on the principle that the higher resolution the distance, the more clusters will be obtained, the high-resolution distance was used to compute positioning results. The weighted K-nearest neighbor (WKNN) considering signal-domain distance selection was used to estimate positions. Two scenarios were selected as test areas; a complex-layout room (Scenario A) for post-graduates and a typical large indoor environment (Scenario B) covering 3200 m2. In both Scenarios A and B, compared with support vector machine (SVM), Gaussian process regression (GPR) and rank algorithms, the improvement rates of positioning accuracy and stability of the proposed algorithm were up to 60.44 and 60.93%, respectively. Experimental results show that the proposed algorithm has a better positioning performance in complex and large indoor environments.


Author(s):  
Xufei Yang ◽  
Noor Haleem ◽  
Augustina Osabutey ◽  
Zhisheng Cen ◽  
Karlee Albert

Particulate matter (PM) represents an air quality management challenge for confined swine production systems. Because of the limited space and ventilation rate, PM can reach relatively high concentrations in swine barns. PM in swine barns possesses different physical, chemical, and biological characteristics than that in the atmosphere and other indoor environments. As a result, it exerts different environmental and health effects and creates some unique challenges regarding PM measurement and mitigation. Numerous research efforts have been made, generating massive data and information. However, relevant review reports are sporadic. This study aims to provide an updated comprehensive review of swine barn PM, focusing on publications since 1990. It covers various topics, including PM characteristics, sources, measurement methods, and in-barn mitigation technologies. Since PM in swine barns is of primarily biological origins, bioaerosols are reviewed in great detail. Relevant topics include bacterial/fungal counts, viruses, microbial community composition, antibiotic-resistant bacteria, antibiotic resistance genes, endotoxins, and (1→3)-β-D-glucans. For each topic, existing knowledge is summarized and discussed and knowledge gaps are identified. Overall, PM in swine barns is complicated in chemical and biological composition and highly variable in mass concentrations, size, and microbial abundance. Feed, feces, and skins constitute the major PM sources. Regarding in-barn PM mitigation, four technologies (oil/water sprinkling, ionization, alternation of feed and feeders, and recirculating air filtration) are dominant. However, none of them have been widely used in commercial barns. A collective discussion of major knowledge gaps and future research needs is offered at the end of the report.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 92
Author(s):  
Joan Frédéric Rey ◽  
Stéphane Goyette ◽  
Mauro Gandolla ◽  
Martha Palacios ◽  
Fabio Barazza ◽  
...  

Radon is a natural and radioactive gas that can accumulate in indoor environments. Indoor radon concentration (IRC) is influenced, among other factors, by meteorology, which is the subject of this paper. Weather parameters impact indoor radon levels and have already been investigated, but rarely in Switzerland. Moreover, there is a strong need for a better understanding of the radon behaviour inside buildings in Switzerland for public health concerns as Switzerland is a radon prone area. Based on long-term, continuous, and hourly radon measurements, radon distributions classified according to different weather event definitions were investigated and then compared at three different study sites in Western Switzerland. Outdoor temperature influences the most indoor radon, and it is globally anti-correlated. Wind influences indoor radon, but it strongly depends on intensity, direction, and building characteristics. Precipitation influences periodically indoor radon levels relatively to their intensity. Atmospheric pressure and relative humidity do not seem to be huge determinants on IRC. Our results are in line with previous findings and provide a vivid example in Western Switzerland. This paper underlines the different influence complexities of radon, and the need to communicate about it within the broader public and with construction professionals, to raise awareness.


2022 ◽  
Author(s):  
Jeongho Park ◽  
Emilie Josephs ◽  
Talia Konkle

We can easily perceive the spatial scale depicted in a picture, regardless of whether it is a small space (e.g., a close-up view of a chair) or a much larger space (e.g., an entire class room). How does the human visual system encode this continuous dimension? Here, we investigated the underlying neural coding of depicted spatial scale, by examining the voxel tuning and topographic organization of brain responses. We created naturalistic yet carefully-controlled stimuli by constructing virtual indoor environments, and rendered a series of snapshots to smoothly sample between a close-up view of the central object and far-scale view of the full environment (object-to-scene continuum). Human brain responses were measured to each position using functional magnetic resonance imaging. We did not find evidence for a smooth topographic mapping for the object-to-scene continuum on the cortex. Instead, we observed large swaths of cortex with opposing ramp-shaped profiles, with highest responses to one end of the object-to-scene continuum or the other, and a small region showing a weak tuning to intermediate scale views. Importantly, when we considered the multi-voxel patterns of the entire ventral occipito-temporal cortex, we found smooth and linear representation of the object-to-scene continuum. Thus, our results together suggest that depicted spatial scale is coded parametrically in large-scale population codes across the entire ventral occipito-temporal cortex.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 402
Author(s):  
Dimitrios Kotzias ◽  
Vassilios Binas ◽  
George Kiriakidis

Heterogeneous photocatalysis using semiconductor oxides such as TiO2, provides an up-and-coming solution for the degradation of environmental pollutants compared with other technologies. TiO2-containing construction materials and paints activated by UV/solar light destroy the ozone precursors NO and NO2 up to 80% and 30%, respectively. The majority of TiO2 materials developed so far are primarily for outdoor use. In recent years, substantial efforts have been made to investigate further the photocatalytic activity of materials containing TiO2 toward priority air pollutants such as NO, NO2, and volatile organic compounds (VOCs) frequently accumulated at high concentration levels, particularly in indoor spaces. The intention of the investigations was to modify the titanium dioxide (TiO2), so that it may be activated by visible light and subsequently used as additive in building envelop materials and indoor paints. This has been achieved, to a high extent, through doping of TiO2 with transition metals such as V, Cr, Fe, Mn, Ni, Co, Cu, and Zn, which reduce the energy gap of TiO2, facilitating the generation of free electrons and holes, thus, extending the absorption spectral range of modified TiO2 to the area of visible light (bathochromic shift-redshift). A substantial problem using TiO2-containing paints and other building materials in indoor environments is the formation of byproducts, e.g., formaldehyde, through the heterogeneous photocatalytic reaction of TiO2 with organic matrices. This affects the air quality in confined spaces and, thus, becomes a possible risk for human health and wellbeing. This work describes the principles and mechanisms of the photocatalytic reactions at the air/catalyst interface of priority pollutants such as NO, benzene, and toluene as individual compounds or mixtures. Emphasis is placed on the reaction and recombination processes of the charge carriers, valence band positive holes (h+) and free electrons (e−), on the surface of TiO2, and on key factors affecting the photocatalytic processes, such as humidity. A hypothesis on the role of aromatic compounds in suppressing the recombination process (h+ and e−) is formulated and discussed. Furthermore, the results of the photocatalytic degradation of NO under visible light conditions using different admixtures of TiO2 and manganese doped (Mn–TiO2) are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document