rlq analysis
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 0)

2021 ◽  
Vol 24 (7) ◽  
pp. 30-45
Author(s):  
Anastasiia Zymaroieva ◽  
Tetiana Fedoniuk ◽  
Nadiia Yorkina ◽  
Viktoria Budakova ◽  
Taras Melnychuk

The level of reacreation load on the components of urban green areas is increasing, so identifying the effective management tools in these ecosystems is becoming crucial for ensuring the maintenance of soil biota habitats. The purpose of this study is to reveal a pattern of structuring community of soil macrofauna under a recreational impact based on an ecomorphic approach. The article assesses the level of recreational transformation of the soil macrofauna of public green spaces in the city of Melitopol on the territory of Novooleksandrivskyi Park. For research purposes, a testing site was allocated in an area with a high level of recreational load, with samples taken within this site. To collect soil macrofauna and assess soil properties at each point of the testing site, soil and zoological tests were carried out and the following soil indicators were measured: temperature, electrical conductivity, humidity and soil penetration resistance, litter depth and grass stand height. The community ordination was performed using two approaches: OMI and RLQ analysis. The study found that the ecological niches of soil macrofauna in recreational conditions are spatially structured. The main factors for structuring the ecological niche of soil macrofauna within the study area are soil penetration resistance in the range of the entire measured layer, soil moisture, and distance to trees. As for the number of species, the basis of the coenomorphic structure of soil macrofauna are silvants (45.5%) and pratants (24.2%). As for the species abundance, the basis of the coenomorphic structure of macrofauna comprises pratants (64.5%), slightly less stepants (19.1%) and silvants (16.1%), and sporadic occurrence of paludants (0.2%). Such coenomorphic structure can be considered as ecologically labile. Zoophages, hemiaerophobes, and megatrophs are tolerant to a high level of recreational load. The area corresponding to the highest level of recreational load is vacant. This indicates factual absence of soil macrofauna species that could exist amid intense recreational exposure


Land ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1057
Author(s):  
Angélica Ochoa-Beltrán ◽  
Johanna Andrea Martínez-Villa ◽  
Peter G. Kennedy ◽  
Beatriz Salgado-Negret ◽  
Alvaro Duque

Andean forests are home to a strikingly high diversity of plants, making it difficult to understand the main drivers of species assembly. Trait-based approaches, however, help overcome some challenges associated with high taxonomic complexity, providing insights into the main drivers of species coexistence. Here, we evaluated the roles of climate, soil fertility, and symbiotic root associations on shaping the assembly of six plant functional traits (leaf area, specific leaf area, dry leaf matter content, leaf thickness, leaf toughness, and wood density) along an elevational gradient in the species-rich northwestern Andean forests of Colombia. The two main axes of the correspondence RLQ analysis explained 95.75% of the variability. The first axis was associated with the leaf economic spectrum, while the second axis with the tradeoff between growth and survival. Furthermore, the fourth corner method showed that both regional (climatic variables) and local factors (soil fertility, symbiotic root associations, and light distribution) played a key role in determining plant trait assembly. In summary, our study emphasizes the importance of considering both individual size and local factors to better understand drivers of plant trait assembly along environmental gradients.


Author(s):  
Sayali D. Sheth ◽  
Anand D. Padhye ◽  
Hemant V. Ghate

We investigated trait-environment relationships of co-occurring aquatic Coleoptera specifically true water beetles in anthropogenic ponds from the Western Ghats, India for the first time. Our objectives were to: (1) identify species assemblages; (2) study species traits; (3) study trait-environment relationships of co-occurring species. We analysed 132 samples collected using standardised quantitative method during the years 2016 and 2017. We found 16 significant assemblages using Fager's index, where most of the pairs have body size ratio of 1.3 or more. For example, Laccophilus parvulus and Hydaticus satoi pair has body size ratio of 3.98, and both are predators, indicating that body size is a function of food size. Moreover, factor analysis revealed three major swimming categories of studied beetles, namely fast swimmers, maneuverers and poor swimmers. Further, the RLQ analysis, and combined approach of RLQ and fourth-corner analysis showed that environmental variables affected species traits. For instance, odonate nymphs and submerged vegetation were positively associated with fast swimmers like Laccophilus inefficiens and Hydaticus satoi. The assemblage of congeners Hydroglyphus inconstans and H. flammulatus can be predator-mediated as these beetles showed negative association with odonate nymphs as well as competitive to obtain resource by showing positive association with chironomid larvae. Therefore, the traits studied were important for ecological performances of species in ponds. This study has also highlighted the importance of anthropogenic ponds in the Western Ghats as biodiversity refuges of ecologically unique and evolutionary old major extant lineages of water beetles.


2018 ◽  
Vol 73 ◽  
pp. 10027
Author(s):  
Nurul Elmi Faid ◽  
Azis Nur Bambang ◽  
Maryono Maryono

The forestry sub-sector is one of the subsectors of the agricultural sector that has an opportunity to support the economic development program, contribute to the Gross Regional Domestic Product (GRDP) and reduce unemployment rate in Daerah Istimewa Yogyakarta (hereafter, DIY Province). The economic growth of DIY Province in 2012-2016 for the forestry sub-sector tends to increase. The objective of this research is to identify and analyze the opportunities of the forestry sub-sector to be used as a reference and as a regional leading sector for improving the economy in DIY Province. This research uses a descriptive analytical method. Location Quotient (LQ) method, modification LQ (Revised LQ and Symmetric LQ) are tools of analysis. The data used is some data from GRDP in the year 2012-2016 based on the fixed price in the year 2010. Based on the calculation of LQ, SLQ and RLQ analysis where obtained LQ value equal to 1.23, RLQ of 1.23 and SLQ of 0.10 indicates that the forestry sub-sector can still be expected to be the regional leading sector in the future to increase economic growth in DIY Province. The forestry sub-sector has potential to become the leading sector in Gunungkidul Regency and Kulonprogo Regency.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3552 ◽  
Author(s):  
Tommaso Sitzia ◽  
Matteo Dainese ◽  
Bertil O. Krüsi ◽  
Duncan McCollin

Spatial patterns of vegetation arise from an interplay of functional traits, environmental characteristics and chance. The retreat of glaciers offers exposed substrates which are colonised by plants forming distinct patchy patterns. The aim of this study was to unravel whether patch-level landscape metrics of plants can be treated as functional traits. We sampled 46 plots, each 1 m × 1 m, distributed along a restricted range of terrain age and topsoil texture on the foreland of the Nardis glacier, located in the South-Eastern Alps, Italy. Nine quantitative functional traits were selected for 16 of the plant species present, and seven landscape metrics were measured to describe the spatial arrangement of the plant species’ patches on the study plots, at a resolution of 1 cm × 1 cm. We studied the relationships among plant communities, landscape metrics, terrain age and topsoil texture. RLQ-analysis was used to examine trait-spatial configuration relationships. To assess the effect of terrain age and topsoil texture variation on trait performance, we applied a partial-RLQ analysis approach. Finally, we used the fourth-corner statistic to quantify and test relationships between traits, landscape metrics and RLQ axes. Floristically-defined relevé clusters differed significantly with regard to several landscape metrics. Diversity in patch types and size increased and patch size decreased with increasing canopy height, leaf size and weight. Moreover, more compact patch shapes were correlated with an increased capacity for the conservation of nutrients in leaves. Neither plant species composition nor any of the landscape metrics were found to differ amongst the three classes of terrain age or topsoil texture. We conclude that patch-level landscape metrics of plants can be treated as species-specific functional traits. We recommend that existing databases of functional traits should incorporate these type of data.


2016 ◽  
Vol 24 (2) ◽  
Author(s):  
O. N. Kunah

The results of studying the spatial structure of soil mesofauna of an urbanotechnozem by OMI- and RLQ-analysis are presented. The research was conducted on 5 June 2012 in the Botanic Garden of Oles Gonchar University (previously – territory of the Park Y. Gagarin, Dnipropetrovsk). The studied plot is situated on the slope of the Krasnopostachekaya balka (48°25'57.43" N, 35°2'16.52" E). The plot consists of 15 transects directed in a perpendicular manner in relation to the talweg. Each transect is made of seven sample points. The distance between points is 2 m. The coordinates of the lower left point were taken as (0; 0). The plot consisted of artificial grassland with a single tree. The vegetation was composed of grassland and steppe, of a mega-mesotrophic, xeromesophilic character. At each point the mesopedobionts were studied (data presented as L-table); temperature, electrical conductivity and soil penetration resistance, and grass height were measured (data presented as R-table). The soil-zoological test area was 25×25 cm. The mesopedobiont community was represented by 28 species and with total abundance 70.1 ind./m2. The following groups were dominant in the ecological structure of the soil animal community; saprohages, pratants, mesotrophocoenomorphs and the endogeic group. The measured edaphic characteristics were shown to play an important role in structurization of the ecological niche of the mesopedobiont community. The usage of morphological or physiological features of animals for the assessment of degree of specific distinctions is applicable for homogeneous taxonomic or ecological groups possessing comparable characteristics which also can be interpreted ecologically. The soil mesofauna is characterized by high taxonomic and ecological diversity of forms,which are difficult to compare by morphological or physiological criteria. The ecological value of characteristics in different groups will be not identical, and the basis for their comparison will be inadequate. Therefore we apply to the description of ecological features an ecomorphic analysis of the soil animals. The organization of communities of soil animals may be considered at the levels of investigated point,biogeocenosis, landscape and regional level. On the basis of landscape-ecological distribution of species in ecological space, their distribution in ecological groups – ecomorphs is established. The regular ratio of an ecomorph in these functional groups will be reflection of their organizational structure and ecological diversity. The obtained data testifies to the justice of this assumption. It is important to note the fact that the functional groups allocated in ecological space by means of the RLQ-analysis show regular patterns of spatial variability. Local functional groups are characterized by ecological characteristics in which any ecomorph may contain species occupying different hierarchical positions. Ascertaining the spatial heterogeneity of the animal community and determinancy of properties of an ecological niche by soil factors is an important result. However, for understanding of the nature of heterogeneity of the spatial variant of ecomorphs the analysis with RLQ-analysis application has been processed. Within a comparatively uniform field the spatial differentiation of the animal community in functional groups has been found. The reality of their existence was not only verified statistically, but also supplemented by a substantial interpretation of the ecomorphic markers of the interrelations between the groups and indicators of the ecological properties of the soil they inhabit. The variation of environmental properties within microsites leads to rearrangement of the ecological frame of the soil animal community. Heterogeneity of a soil body and vegetation mosaic form patterns of the spatial organisation of the soil animal community.


2016 ◽  
Author(s):  
Tommaso Sitzia ◽  
Matteo Dainese ◽  
Bertil O. Krüsi ◽  
Duncan McCollin

The main aim of this study was to elucidate the roles of terrain age and spatial self-organisation as drivers of primary succession using high-resolution assessment of plant composition, functional traits and landscape metrics. We sampled 46 plots, 1m x 1m each, distributed along a 15-70 year range of terrain ages on the foreland of the Nardis glacier, located in the southern central Alps of Italy. From existing databases, we selected nine quantitative traits for the 16 plant species present, and we measured a set of seven landscape metrics, which described the spatial arrangement of the plant species patches on the study plots, at a 1cm x 1cm resolution. We applied linear models to study the relationships among plant communities, landscape metrics and terrain age. Furthermore, we used RLQ-analysis to examine trait-spatial configuration relations. To assess the effect of terrain age variation on trait performance, we applied a partial-RLQ analysis approach. Finally, we used the fourth-corner statistic to quantify and test relations between traits, landscape metrics and RLQ axes. Surprisingly, linear models revealed that neither the plant composition nor any of the landscape metrics differed among the three classes of terrain age distinguished, viz. 15-41 y, 41-57 y and 57-66 y, respectively. Further, no correlations were detected between trait patterns and terrain age, however, the floristically defined relevé clusters differed significantly with regard to several landscape metrics and suggestive relationships between increasing patch diversity and traits connected to growth rate were detected. We conclude that (i) terrain age below 70 years is not a good predictor for neither plant composition nor spatial configuration on the studied microhabitat and (ii) the small-scale configuration of the plant species patches correlates with certain functional traits and with plant composition, suggesting species-based spatial self-organisation.


2016 ◽  
Author(s):  
Tommaso Sitzia ◽  
Matteo Dainese ◽  
Bertil O. Krüsi ◽  
Duncan McCollin

The main aim of this study was to elucidate the roles of terrain age and spatial self-organisation as drivers of primary succession using high-resolution assessment of plant composition, functional traits and landscape metrics. We sampled 46 plots, 1m x 1m each, distributed along a 15-70 year range of terrain ages on the foreland of the Nardis glacier, located in the southern central Alps of Italy. From existing databases, we selected nine quantitative traits for the 16 plant species present, and we measured a set of seven landscape metrics, which described the spatial arrangement of the plant species patches on the study plots, at a 1cm x 1cm resolution. We applied linear models to study the relationships among plant communities, landscape metrics and terrain age. Furthermore, we used RLQ-analysis to examine trait-spatial configuration relations. To assess the effect of terrain age variation on trait performance, we applied a partial-RLQ analysis approach. Finally, we used the fourth-corner statistic to quantify and test relations between traits, landscape metrics and RLQ axes. Surprisingly, linear models revealed that neither the plant composition nor any of the landscape metrics differed among the three classes of terrain age distinguished, viz. 15-41 y, 41-57 y and 57-66 y, respectively. Further, no correlations were detected between trait patterns and terrain age, however, the floristically defined relevé clusters differed significantly with regard to several landscape metrics and suggestive relationships between increasing patch diversity and traits connected to growth rate were detected. We conclude that (i) terrain age below 70 years is not a good predictor for neither plant composition nor spatial configuration on the studied microhabitat and (ii) the small-scale configuration of the plant species patches correlates with certain functional traits and with plant composition, suggesting species-based spatial self-organisation.


2016 ◽  
Vol 24 (1) ◽  
pp. 26-39 ◽  
Author(s):  
O. V. Zhukov ◽  
O. N. Kunah ◽  
V. A. Novikova

We revealed the functional groups of the animals of sod pinewood soils (arena of the river Dnepr in the "Dneprovsko-Orelsky" Nature Reserve) on the basis of cluster analysis of the RLQ-axes received as result of interaction of matrix of community, matrix of edaphic parameters and matrix of ecomorphs of soil animals. The quantitative account of soil mesofauna has allowed us to establish that the community of animals inhabiting sod pinewood soils is represented by 20 species at a density of 68.9 ± 14.6 ind./m2, 8 forms were identified at the level of genus, family or order. Two species were represented by their larval and imago phases (Anatolica eremita (Steven, 1829) and Calathus ambiguus (Paykull, 1790)). A count of animals conducted in an alternative way has allowed us to expand the list to 38 species or forms at species level. The level of abundance and diversity for sod pinewood soils on the arena is not high compared with other types of soils of the arena of the river Dnepr. This result shows that the community has a simplified ecological structure. The prevailing ecological structure of the community can be characterised as steppe, xerophilous, oligotrophocoenomorphic. Anecic animals are absent from the topomorphic structure and saprophagous animals absent from the trophic structure. Only additional collection by alternative methods has allowed us to establish the presence in the community of saprophagous and anecic animals. The latter ecological group is represented by the extremely mobile vertebrate species Pelobates fuscus. The foromorphic structure of the community differs by its great variety. In this structure various strategies of animals’ movement through the soil are proportionately represented. On the one hand, we see various ways of movement of herpetobiont animals, mainly insect imagoes, which as a whole differ in their considerable migratory potential. This circumstance staticizes the historical reasons for the formation of the studied community. On the other hand, in the community there are various strategies of movement in the soil that allow us to assume or determine the reasons or causes of structurization of an ecological niche. Environmental factors are described by two groups of indicators, edaphic properties and values of phytoindicator scales. The mesopedobionts community structure is presented as a classical matrix of species/sampling points. The ecology of communities is principally focused not on taxonomic features but on biological properties (traits) of species. Such features can act on ecomorphs of soil animals. The direct functional analysis of relationship of biological properties of species with variables of environment by means of data on the abundance of species demands association of three matrixes of data. Such problem can be tackled by means of the RLQ-analysis. A key aspect of structurization of communities of soil mesofauna is differentiation in trophic traits. The organisation of a community of soil animals in an ecological space set by axes RLQ can be displayed in the form of a natural variation of RLQ-axes in geographical space. Everything in the RLQ is represented, as follows from the mathematical nature of this generalisation, an independent aspect of the coordinated variation of structure of a community of soil animals, properties of environment and ecomorphic features of mesopedobionts. 


Sign in / Sign up

Export Citation Format

Share Document