bayesian brain
Recently Published Documents


TOTAL DOCUMENTS

84
(FIVE YEARS 57)

H-INDEX

13
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Jinmao Zou ◽  
Lawrence Huang ◽  
Lizhao Wang ◽  
Yuanyuan Xu ◽  
Chenchang Li ◽  
...  

Bayesian Brain theory suggests brain utilises predictive processing framework to interpret the noisy world. Predictive processing is essential to perception, action, cognition and psychiatric disease, but underlying neural circuit mechanisms remain undelineated. Here we show the neuronal cell-type and circuit basis for visual predictive processing in awake, head-fixed mice during self-initiated running. Preceding running, vasoactive intestinal peptide (VIP)-expressing inhibitory interneurons (INs) in primary visual cortex (V1) are robustly activated in absence of structured visual stimuli. This pre-running activation is mediated via distal top-down projections from frontal, parietal and retrosplenial areas known for motion planning, but not local excitatory inputs associated with the bottom-up pathway. Somatostatin (SST) INs show pre-running suppression and post-running activation, indicating a VIP-SST motif. Differential VIP-SST peri-running dynamics anisotropically suppress neighbouring pyramidal (Pyr) neurons, preadapting Pyr neurons to the incoming running. Our data delineate key neuron types and circuit elements of predictive processing brain employs in action and perception.


2021 ◽  
Vol 22 (21) ◽  
pp. 11868
Author(s):  
Youri Timsit ◽  
Sergeant-Perthuis Grégoire

How can single cells without nervous systems perform complex behaviours such as habituation, associative learning and decision making, which are considered the hallmark of animals with a brain? Are there molecular systems that underlie cognitive properties equivalent to those of the brain? This review follows the development of the idea of molecular brains from Darwin’s “root brain hypothesis”, through bacterial chemotaxis, to the recent discovery of neuron-like r-protein networks in the ribosome. By combining a structural biology view with a Bayesian brain approach, this review explores the evolutionary labyrinth of information processing systems across scales. Ribosomal protein networks open a window into what were probably the earliest signalling systems to emerge before the radiation of the three kingdoms. While ribosomal networks are characterised by long-lasting interactions between their protein nodes, cell signalling networks are essentially based on transient interactions. As a corollary, while signals propagated in persistent networks may be ephemeral, networks whose interactions are transient constrain signals diffusing into the cytoplasm to be durable in time, such as post-translational modifications of proteins or second messenger synthesis. The duration and nature of the signals, in turn, implies different mechanisms for the integration of multiple signals and decision making. Evolution then reinvented networks with persistent interactions with the development of nervous systems in metazoans. Ribosomal protein networks and simple nervous systems display architectural and functional analogies whose comparison could suggest scale invariance in information processing. At the molecular level, the significant complexification of eukaryotic ribosomal protein networks is associated with a burst in the acquisition of new conserved aromatic amino acids. Knowing that aromatic residues play a critical role in allosteric receptors and channels, this observation suggests a general role of π systems and their interactions with charged amino acids in multiple signal integration and information processing. We think that these findings may provide the molecular basis for designing future computers with organic processors.


2021 ◽  
Vol 410 ◽  
pp. 108338
Author(s):  
Suyi Hu ◽  
Deborah A. Hall ◽  
Frédéric Zubler ◽  
Raphael Sznitman ◽  
Lukas Anschuetz ◽  
...  

2021 ◽  
Vol 31 (17) ◽  
pp. R1026-R1032
Author(s):  
Daniel Yon ◽  
Chris D. Frith
Keyword(s):  

2021 ◽  
Author(s):  
David Harris ◽  
Jamie North ◽  
Oliver Runswick

During dynamic and time-constrained sporting tasks performers rely on both online perceptual information and prior contextual knowledge to make effective anticipatory judgments. It has been suggested that performers may integrate these sources of information in an approximately Bayesian fashion, by weighting available information sources according to their expected precision. In the present work, we extended Bayesian brain approaches to anticipation by using formal computational models to estimate how performers weighted different information sources when anticipating the bounce direction of a rugby ball. Both recreational (novice) and professional (expert) rugby players (n = 58) were asked to predict the bounce height of an oncoming rugby ball in a temporal occlusion paradigm. A Bayesian computational model, based on a partially observable Markov decision process, was fitted to observed responses to estimate participants’ weighting of online sensory cues and prior beliefs about ball bounce height. The results showed that experts were more sensitive to online sensory information, but that neither experts nor novices relied heavily on contextual priors in this task. Experts, but not novices, were observed to down-weight contextual priors in their anticipatory decisions as later and more precise visual cues emerged, as predicted by Bayesian and active inference accounts of perception.


Synthese ◽  
2021 ◽  
Author(s):  
Paweł Gładziejewski

AbstractIn this paper, I use the predictive processing (PP) theory of perception to tackle the question of how perceptual states can be rationally involved in cognition by justifying other mental states. I put forward two claims regarding the epistemological implications of PP. First, perceptual states can confer justification on other mental states because the perceptual states are themselves rationally acquired. Second, despite being inferentially justified rather than epistemically basic, perceptual states can still be epistemically responsive to the mind-independent world. My main goal is to elucidate the epistemology of perception already implicit in PP. But I also hope to show how it is possible to peacefully combine central tenets of foundationalist and coherentist accounts of the rational powers of perception while avoiding the well-recognized pitfalls of either.


2021 ◽  
Vol 8 (3) ◽  
pp. 189-200
Author(s):  
Adel Razek

In this assessment, we have made an effort of synthesis on the role of theoretical and observational investigations in the analysis of the concepts and functioning of different natural biological and artificial phenomena. In this context, we pursued the objective of examining published works relating to the behavioral prediction of phenomena associated with its observation. We have examined examples from the literature concerning phenomena with known behaviors that associated to knowledge uncertainty as well as cases concerning phenomena with unknown and changing random behaviors linked to random uncertainty. The concerned cases are relative to brain functioning in neuroscience, modern smart industrial devices, and health care predictive endemic protocols. As predictive modeling is very concerned by the problematics relative to uncertainties that depend on the degree of matching in the link prediction-observation, we investigated first how to improve the model to match better the observation. Thus, we considered the case when the observed behavior and its model are contrasting, that implies the development of revised or amended models. Then we studied the case concerning the practice of modeling for the prediction of future behaviors of a phenomenon that is well known, and owning identified behavior. For such case, we illustrated the situation of prediction matched to observation operated in two cases. These are the Bayesian Brain theory in neuroscience and the Digital Twins industrial concept. The last investigated circumstance concerns the use of modeling for the prediction of future behaviors of a phenomenon that is not well known, or owning behavior varying arbitrary. For this situation, we studied contagion infections with an unknown mutant virus where the prediction task is very complicated and would be constrained only to adjust the principal clinical observation protocol. Keywords: prediction, observation, Bayesian, neuroscience, brain functioning, mutant virus


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 783
Author(s):  
Adam Safron

Drawing from both enactivist and cognitivist perspectives on mind, I propose that explaining teleological phenomena may require reappraising both “Cartesian theaters” and mental homunculi in terms of embodied self-models (ESMs), understood as body maps with agentic properties, functioning as predictive-memory systems and cybernetic controllers. Quasi-homuncular ESMs are suggested to constitute a major organizing principle for neural architectures due to their initial and ongoing significance for solutions to inference problems in cognitive (and affective) development. Embodied experiences provide foundational lessons in learning curriculums in which agents explore increasingly challenging problem spaces, so answering an unresolved question in Bayesian cognitive science: what are biologically plausible mechanisms for equipping learners with sufficiently powerful inductive biases to adequately constrain inference spaces? Drawing on models from neurophysiology, psychology, and developmental robotics, I describe how embodiment provides fundamental sources of empirical priors (as reliably learnable posterior expectations). If ESMs play this kind of foundational role in cognitive development, then bidirectional linkages will be found between all sensory modalities and frontal-parietal control hierarchies, so infusing all senses with somatic-motoric properties, thereby structuring all perception by relevant affordances, so solving frame problems for embodied agents. Drawing upon the Free Energy Principle and Active Inference framework, I describe a particular mechanism for intentional action selection via consciously imagined (and explicitly represented) goal realization, where contrasts between desired and present states influence ongoing policy selection via predictive coding mechanisms and backward-chained imaginings (as self-realizing predictions). This embodied developmental legacy suggests a mechanism by which imaginings can be intentionally shaped by (internalized) partially-expressed motor acts, so providing means of agentic control for attention, working memory, imagination, and behavior. I further describe the nature(s) of mental causation and self-control, and also provide an account of readiness potentials in Libet paradigms wherein conscious intentions shape causal streams leading to enaction. Finally, I provide neurophenomenological handlings of prototypical qualia including pleasure, pain, and desire in terms of self-annihilating free energy gradients via quasi-synesthetic interoceptive active inference. In brief, this manuscript is intended to illustrate how radically embodied minds may create foundations for intelligence (as capacity for learning and inference), consciousness (as somatically-grounded self-world modeling), and will (as deployment of predictive models for enacting valued goals).


2021 ◽  
Vol 4 ◽  
Author(s):  
Sascha Frölich ◽  
Dimitrije Marković ◽  
Stefan J. Kiebel

Various imaging and electrophysiological studies in a number of different species and brain regions have revealed that neuronal dynamics associated with diverse behavioral patterns and cognitive tasks take on a sequence-like structure, even when encoding stationary concepts. These neuronal sequences are characterized by robust and reproducible spatiotemporal activation patterns. This suggests that the role of neuronal sequences may be much more fundamental for brain function than is commonly believed. Furthermore, the idea that the brain is not simply a passive observer but an active predictor of its sensory input, is supported by an enormous amount of evidence in fields as diverse as human ethology and physiology, besides neuroscience. Hence, a central aspect of this review is to illustrate how neuronal sequences can be understood as critical for probabilistic predictive information processing, and what dynamical principles can be used as generators of neuronal sequences. Moreover, since different lines of evidence from neuroscience and computational modeling suggest that the brain is organized in a functional hierarchy of time scales, we will also review how models based on sequence-generating principles can be embedded in such a hierarchy, to form a generative model for recognition and prediction of sensory input. We shortly introduce the Bayesian brain hypothesis as a prominent mathematical description of how online, i.e., fast, recognition, and predictions may be computed by the brain. Finally, we briefly discuss some recent advances in machine learning, where spatiotemporally structured methods (akin to neuronal sequences) and hierarchical networks have independently been developed for a wide range of tasks. We conclude that the investigation of specific dynamical and structural principles of sequential brain activity not only helps us understand how the brain processes information and generates predictions, but also informs us about neuroscientific principles potentially useful for designing more efficient artificial neuronal networks for machine learning tasks.


2021 ◽  
Author(s):  
Hanna Thaler ◽  
Laura Albantakis ◽  
Leonhard Schilbach

Autism is a neurodevelopmental condition characterized by difficulties in social perception, cognition, and interaction. Differences to non-autistic peers start appearing early in development and are associated with altered brain structure and functioning. This chapter begins with an overview of research on theory of mind and empathy, discussing how social cognitive skills in these domains present in high-functioning autism. Findings indicate that, across development, a sizable portion of autistic people learns to compensate for specific difficulties. Yet, challenges in social interaction continue to impact their level of functioning in everyday life throughout adulthood. We describe how research has attempted to introduce more interactive experimental settings, and how this interactive turn has improved our understanding of autism in contexts closer related to real life. Finally, we discuss the Bayesian brain account of autism as a computational framework that explains social difficulties in terms of domain-general perceptual, cognitive and biological mechanisms. We conclude by pointing to recent developments such as participatory research and the mining of larger longitudinal datasets as ways to make autism research more effective in improving autistic people’s lives.


Sign in / Sign up

Export Citation Format

Share Document