lean burn
Recently Published Documents


TOTAL DOCUMENTS

1215
(FIVE YEARS 228)

H-INDEX

51
(FIVE YEARS 12)

Author(s):  
Chun Xia ◽  
Tingyu Zhao ◽  
Junhua Fang ◽  
Lei Zhu ◽  
Zhen Huang

2022 ◽  
Author(s):  
Keiichi Okai ◽  
Hitoshi Fujiwara ◽  
Takuya Mizuno ◽  
Seiji Yoshida ◽  
Takeshi Yamamoto ◽  
...  
Keyword(s):  

Author(s):  
Amit Jhalani ◽  
Dilip Sharma ◽  
Pushpendra Kumar Sharma ◽  
Digambar Singh ◽  
Sumit Jhalani ◽  
...  

Diesel engines are lean burn engines; hence CO and HC emissions in the exhaust are less likely to occur in substantial amounts. The emissions of serious concern in compression ignition engines are particulate matter and nitrogen oxides because of elevated temperature conditions of combustion. Hence the researchers have strived continuously to lower down the temperature of combustion in order to bring down the emissions from CI engines. This has been tried through premixed charge compression ignition, homogeneous charge compression ignition (HCCI), gasoline compression ignition and reactivity controlled compression ignition (RCCI). In this study, an attempt has been made to critically review the literature on low-temperature combustion conditions using various conventional and alternative fuels. The problems and challenges augmented with the strategies have also been described. Water-in-diesel emulsion technology has been discussed in detail. Most of the authors agree over the positive outcomes of water-diesel emulsion for both performance and emissions simultaneously.


2021 ◽  
pp. 146808742110642
Author(s):  
Sree Harsha Rayasam ◽  
Weijin Qiu ◽  
Ted Rimstidt ◽  
Gregory M Shaver ◽  
Daniel G Van Alstine ◽  
...  

Accurate modeling and control of the gas exchange process in a modern turbocharged spark-ignited engine is critical for the control and analysis of different control strategies. This paper develops a simple physics-based, five-state engine model for a large four-stroke spark-ignited turbocharged engine fueled by natural gas that is used in variable speed applications. The control-oriented model is amenable for control algorithm development and includes the impacts of modulation to any combination of four actuators: throttle valve, bypass valve, fuel rate, and wastegate valve. The control problem requires tracking engine speed to provide propulsive power, differential pressure across the throttle valve to prevent compressor surge, air-to-fuel ratio to restrict engine emissions. Two validation strategies, open-loop and closed-loop, are used to validate the accuracy of both nonlinear and linear versions of the control-oriented model. The control models are able to capture the engine dynamics within 5%–10% error at most of the engine operating points. Finally, the relative gain array (RGA) is applied to the linearized engine model to understand the degree of interactions between plant inputs and outputs as a function of frequency for various operating points. Results of the RGA analysis show that the preferred input-output pairing changes depending on the linear plant model as well as frequency. Therefore, a coordinated controller is ideal to tackle the control problem in question.


Author(s):  
Xiaoye Han ◽  
Xiao Yu ◽  
Hua Zhu ◽  
Linyan Wang ◽  
Shui Yu ◽  
...  

An advanced ignition technique is developed to achieve multi-event breakdown and multi-site ignition using a single coil for ignition quality improvements. The igniter enables a unique elastic breakdown process embracing a series of high-frequency discharge events at the spark gap. The equivalent electric circuits and current/voltage equations are identified and verified for the first time to explain the working principle that governs such an elastic breakdown process. Benchmarking tests are first performed to compare the elastic breakdown ignition with the conventional and advanced multi-electrode ignition systems. The elastic breakdown and spark events are thereafter analyzed through current and voltage measurements and high-speed imaging techniques. Finally, ignition tests in combustion chambers are performed to examine the effects on the ignition process in comparison with conventional coil-based ignition systems. The experiments show that, the elastic breakdown ignition can distribute multiple high-frequency breakdown events at all electrode pairs of a multi-electrode sparkplug while using only one ignition coil, thereby offering significant cost saving advantage and packaging practicability.


2021 ◽  
Vol 943 (1) ◽  
pp. 012015
Author(s):  
Qichao Qin ◽  
Youpeng Chen ◽  
Zhuogeng Qin ◽  
Chaoqun Tu

Abstract NOx is the main emission of lean burn natural gas engine (NGE). Water injection (WI) is an effective method to reduce NOx, which has been widely studied in conventional fuel engine. Currently, there are few researches on the application of WI in NGE. The influences of WI on NGE are not clear. In the paper, the effect mechanisms of WI on the emissions of NGE are studied. Based on the thermodynamic properties of water and the combustion mechanism of natural gas, the emissions generation mechanism of NGE with WI was analyzed. According to the experimental system, the effects of intake manifold water injection (IMWI) on the emissions of a lean burn NGE was carried out. The results show that, with WI, the in-cylinder temperature decreased greatly, which effectively inhibited the formation of thermal NO. Water generated a lot of OH groups, which effectively inhibited the formation of rapid NO. At 1800 rpm and 0.92g/s WI rate, NOx is reduced by 70.4%. OH group could effectively promote CO oxidize to CO2. At 1000 rpm and 0.92g/s WI rate, CO is decreased by 22.2%. However, since the decrease of the total activation energy of combustion reaction, the chain breaking reaction increased, resulting in a significant increase in HC. At 800rpm and 0.92g/s WI rate, HC was increased by 11.6%.


Sign in / Sign up

Export Citation Format

Share Document