sterility testing
Recently Published Documents


TOTAL DOCUMENTS

187
(FIVE YEARS 40)

H-INDEX

15
(FIVE YEARS 1)

Author(s):  
Heloise Henry ◽  
Sixtine Gilliot ◽  
Stephanie Genay ◽  
Christine Barthelemy ◽  
Bertrand Decaudin ◽  
...  

Abstract Disclaimer In an effort to expedite the publication of articles, AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time. Purpose This study evaluated the stability of diluted insulin aspart solutions (containing insulin aspart and preservatives) at their most commonly used concentration in intensive care units (1 unit/mL), in 2 container types: cyclic olefin copolymer (COC) vials and polypropylene (PP) syringes. Methods Insulin aspart solution (1 unit/mL, diluted in 0.9% sodium chloride injection) was stored for 365 days in COC vials with gray stoppers and PP syringes at refrigerated (5±3°C) and ambient temperatures (25°C ± 2°C at 60% ± 5% relative humidity and protected from light). Chemical testing was conducted monthly using a validated high-performance liquid chromatography method (quantification of insulin aspart, phenol, and metacresol). Physical stability was evaluated monthly via pH measurements, visible and subvisible particle counts, and osmolality measurements. Sterility testing was also performed to validate the sterile preparation process and the maintenance of sterility throughout the study. Results The limit of stability was set at 90% of the initial concentrations of insulin aspart, phenol, and metacresol. The physicochemical stability of 1-unit/mL insulin solutions stored refrigerated and protected from light, was unchanged in COC vials for the 365-day period and for 1 month in PP syringes. At ambient temperature, subvisible particulate contamination as well as the chemical stability of insulin and metacresol were acceptable for only 1 month’s storage in PP syringes, while insulin chemical stability was maintained for only 3 months’ storage in COC vials. Conclusion According to our results, it is not recommended to administer 1-unit/mL pharmacy-diluted insulin solutions after 3 months’ storage in COC vials at ambient temperature or after 1 month in PP syringes at ambient temperature. The findings support storage of 1-unit/mL insulin aspart solution in COC vials at refrigerated temperature as the best option over the long term. Sterility was maintained in every condition. Both sterility and physicochemical stability are essential to authorize the administration of a parenteral insulin solution.


Author(s):  
Satyam Mukherjee ◽  
Sukdev Mukherjee ◽  
Rajkumar Mahto ◽  
Debabrata Basu ◽  
Rizwan Javed ◽  
...  

2021 ◽  
Vol 24 (6) ◽  
pp. E829-E837

BACKGROUND: Postoperative patient-controlled analgesia provides pain relief, encourages early mobilization, and results in a shortened hospital stay. Patient-controlled analgesia involves the mixing of different types of drugs. When using patient-controlled analgesia, it is important to confirm the microbiological and physicochemical stability of each drug in a mixture to guarantee that the drug is delivered to the patient in an unaltered form. OBJECTIVES: To confirm the microbiological and physicochemical stability of various drug mixtures for intravenous patient-controlled analgesia. STUDY DESIGN: An in vitro protocol to examine the microbiological and physicochemical stability of the most commonly used postoperative intravenous patient-controlled analgesia mixtures at our institution. SETTING: In vitro laboratory study. METHODS: Each mixture contained a total of 4 drugs: fentanyl 400 µg, ketorolac 30 mg, either hydromorphone 4 mg or oxycodone 10 mg, and either ramosetron 0.3 mg or ondansetron 10 mg. Each mixture was placed in a portable patient-controlled analgesia system containing 0.9% saline and stored at a constant temperature of 24°C for 96 hours. Physical properties (color, transparency, and sedimentation) were observed with the naked eye and optical microscopy. Sterility testing was performed to assess microbiological contamination in the drug mixture during the 96-hour study period. The pH of each mixture was evaluated for up to 96 hours after mixing. The concentration of each drug was evaluated by high-performance liquid chromatography every 24 hours until 96 hours after mixing. RESULTS: All mixtures appeared visibly transparent, and no sediments were visible under the microscope. Bacterial or fungal growth was not observed in any of the samples after 14 days of incubation. The pH variations in all mixtures were maintained within 0.25 over the 96-hour study period. The concentration of drugs, except ketorolac, ranged from 90–110% of the initial concentration up to 96 hours after mixing. In the mixtures with a pH of 4.21–4.39, the concentration of ketorolac significantly decreased at 24 hours and 48 hours. LIMITATIONS: Confirmation of the stability of drugs in vitro does not automatically ensure that the pharmacokinetics and pharmacodynamics of the drugs are not altered in vivo. CONCLUSION: With the exception of ketorolac, the drugs used in the intravenous patient-controlled analgesia drug mixtures in this study were physicochemically stable up to 96 hours after mixing. The concentration of ketorolac decreased in more acidic mixtures. KEY WORDS: Patient-controlled analgesia, multimodal analgesia, stability, fentanyl, oxycodone, hydromorphone, ketorolac, ondansetron, ramosetron


Author(s):  
Nicole E. Putnam ◽  
Anna F. Lau

The United States Food and Drug Administration (FDA) regulates manufacturing and testing of advanced therapeutic medicinal products (ATMPs) to ensure the safety of each product for human use. Gold standard sterility testing (USP<71>) and alternative blood culture systems have major limitations for the detection of fungal contaminants. In this study, we evaluated the performance of i LYM media (designed originally for the food and beverage industry) to assess its potential for use in the biopharmaceutical field for ATMP sterility testing. We conducted a parallel evaluation of four different test systems (USP<71>, BacT/ALERT, BACTEC, and Sabouraud Dextrose Agar [SDA] culture), three different bottle media formulations ( i LYM, i FA + , and Myco/F Lytic), and two incubation temperatures (22.5°C and 32.5-35°C) using a diverse set of fungi ( n =51) isolated from NIH cleanroom environments and previous product contaminants. Additionally, we evaluated the effect of agitation versus “delayed entry” static pre-incubation on test sensitivity and time to detection (TTD). Overall, delayed entry of bottles onto the BacT/ALERT or BACTEC instruments (with agitation) did not improve test performance. USP<71> and SDA culture continued to significantly outperform each automated culture condition alone. However, we show for the first time, that a closed-system, dual-bottle combination of i LYM 22.5°C and i FA + 32.5°C can provide high fungal sensitivity, statistically comparable to USP<71>, when tested against a diverse range of environmental fungi. Our study fills a much-needed gap in biopharmaceutical testing and offers a favorable testing algorithm that maximizes bacterial and fungal test sensitivity whilst minimizing risk of product contamination associated with laboratory handling.


Healthcare ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1025
Author(s):  
Sonja Virtanen ◽  
Karmen Kapp ◽  
Maria Rautamo ◽  
Lotta Schepel ◽  
Carita Lindén-Lahti ◽  
...  

Parenteral products must be compounded using an aseptic technique to ensure sterility of the medicine. We compared the effect of three clinical environments as compounding areas as well as different aseptic techniques on the sterility of the compounded parenteral product. Clinical pharmacists and pediatric nurses compounded 220 samples in total in three clinical environments: a patient room, a medicine room and biological safety cabinet. The study combined four methods: observation, environmental monitoring (settle plates), monitoring of personnel (finger dab plates) and sterility testing (membrane filtration). Of the compounded samples, 99% were sterile and no significant differences emerged between the clinical environments. Based on the settle plates, the biological safety cabinet was the only area that fulfilled the requirements for eliminating microbial contamination. Most of the steps on the observation form for aseptic techniques were followed. All participants disinfected their hands, wore gloves and disinfected the septum of the vial. Non-contaminated finger dab plates were mostly detected after compounding in the biological safety cabinet. Aseptic techniques were followed relatively well in all environments. However, these results emphasize the importance of good aseptic techniques and support the recommendation of compounding parenteral products in biological safety cabinets in clinical environments.


Sign in / Sign up

Export Citation Format

Share Document