cognitive delay
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 38)

H-INDEX

14
(FIVE YEARS 2)

2021 ◽  
pp. 1-6
Author(s):  
Xicheng Tao ◽  
Yueping Che ◽  
Chenxi Li ◽  
Wencong Ruan ◽  
Jialu Xu ◽  
...  

Recently, an increasing number of genes have been associated with global developmental delay (GDD) and intellectual disability (ID). The sorting nexin (SNX) protein family plays multiple roles in protein trafficking and intracellular signaling. SNXs have been reported to be associated with several disorders, including Alzheimer disease and Down syndrome. Despite the growing evidence of an association of SNXs with neurodegeneration, SNX13 deficiency has not been associated with GDD or ID. In this study, we present the case of a 4-year-old boy with brain dysplasia and GDD, including language delay, cognitive delay, and dyskinesia. Exome sequencing revealed a 1-bp homozygous deletion in <i>SNX13</i> (NM_015132.5: exon8: c.742_743del; p.Tyr248Leufs*20), which caused a frameshift and predicted early termination. Sanger sequencing confirmed that the variant was inherited from his parents respectively. Our findings associate <i>SNX13</i> variation with GDD for the first time and provide a new GDD candidate gene.


2021 ◽  
Author(s):  
Jo Sourbron ◽  
Katrien Jansen ◽  
Davide Mei ◽  
Trine Bjørg Hammer ◽  
Rikke S. Møller ◽  
...  

AbstractWe report an in-depth genetic analysis in an 11-year-old boy with drug-resistant, generalized seizures and developmental disability. Three distinct variants of unknown clinical significance (VUS) were detected by whole exome sequencing (WES) but not by initial genetic analyses (microarray and epilepsy gene panel). These variants involve the SLC7A3, CACNA1H, and IGLON5 genes, which were subsequently evaluated by computational analyses using the InterVar tool and MutationTaster. While future functional studies are necessary to prove the pathogenicity of a certain VUS, segregation analyses over three generations and in silico predictions suggest the X-linked gene SLC7A3 (transmembrane solute carrier transporter) as the likely culprit gene in this patient. In addition, a search via GeneMatcher unveiled two additional patients with a VUS in SLC7A3. We propose SLC7A3 as a likely candidate gene for epilepsy and/or developmental/cognitive delay and provide an overview of the 27 SLC genes related to epilepsy by other preclinical and/or clinical studies.


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260590
Author(s):  
Natalie V. Scime ◽  
Erin Hetherington ◽  
Lianne Tomfohr-Madsen ◽  
Alberto Nettel-Aguirre ◽  
Kathleen H. Chaput ◽  
...  

Hypertensive disorders in pregnancy (HDP) are associated with increased risk of offspring neurodevelopmental disorders, suggesting long-term adverse impacts on fetal brain development. However, the relationship between HDP and deficits in general child development is unclear. Our objective was to assess the association between HDP and motor and cognitive developmental delay in children at 36 months of age. We analyzed data from the All Our Families community-based cohort study (n = 1554). Diagnosis of HDP–gestational or chronic hypertension, preeclampsia, or eclampsia–was measured through medical records. Child development was measured by maternal-report on five domains of the Ages and Stages Questionnaire (ASQ-3). Standardized cut-off scores were used to operationalize binary variables for any delay, motor delay, and cognitive delay. We calculated adjusted risk ratios (aRRs) and 95% confidence intervals (CIs) using logistic regression, sequentially controlling for potential confounders followed by factors suspected to lie on the causal pathway. Overall, 8.0% of women had HDP and hypertension-exposed children had higher prevalence of delay than unexposed children. Hypertension-exposed children had elevated risk for developmental delay, but CIs crossed the null. The aRRs quantifying the fully adjusted effect of HDP on child development were 1.19 (95% CI 0.92, 1.53) for any delay, 1.18 (95% CI 0.86, 1.61) for motor delay, and 1.24 (95% CI 0.83, 1.85) for cognitive delay. We did not find a statistically significant association between HDP and developmental delay. Confidence intervals suggest that children exposed to HDP in utero have either similar or slightly elevated risk of any, motor, and cognitive delay at 36 months after controlling for maternal and obstetric characteristics. The observed direction of association aligns with evidence of biological mechanisms whereby hypertensive pathology can disrupt fetal neurodevelopment; however, more evidence is needed. Findings may have implications for early developmental monitoring and intervention following prenatal hypertension exposure.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Katherine Ellis ◽  
Jo Moss ◽  
Chrysi Stefanidou ◽  
Chris Oliver ◽  
Ian Apperly

Abstract Background Cornelia de Lange (CdLS), Fragile X (FXS) and Rubinstein–Taybi syndromes (RTS) evidence unique profiles of autistic characteristics. To delineate these profiles further, the development of early social cognitive abilities in children with CdLS, FXS and RTS was compared to that observed in typically developing (TD) and autistic (AUT) children. Methods Children with CdLS (N = 22), FXS (N = 19) and RTS (N = 18), completed the Early Social Cognition Scale (ESCogS). Extant data from AUT (N = 19) and TD (N = 86) children were used for comparison. Results Similar to AUT children, children with CdLS, FXS and RTS showed an overall delay in passing ESCogS tasks. Children with CdLS showed a similar degree of delay to AUT children and greater delay than children with FXS and RTS. The CdLS, FXS and RTS groups did not pass tasks in the same sequence observed in TD and AUT children. Children with CdLS (p = 0.04), FXS (p = 0.02) and RTS (p = 0.04) performed better on tasks requiring understanding simple intentions in others significantly more than tasks requiring joint attention skills. Conclusions An underlying mechanism other than general cognitive delay may be disrupting early social cognitive development in children with CdLS, FXS and RTS. Factors that may disrupt early social cognitive development within these syndromes are discussed.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Antonio Gónzalez-Meneses ◽  
Mercè Pineda ◽  
Anabela Bandeira ◽  
Patrícia Janeiro ◽  
María Ángeles Ruiz ◽  
...  

Abstract Background Mucopolysaccharidosis type VII (Sly syndrome) is an ultra-rare neurometabolic disorder caused by inherited deficiency of the lysosomal enzyme β-glucuronidase. Precise data regarding its epidemiology are scarce, but birth prevalence is estimated to vary from 0.02 to 0.24 per 100,000 live births. The clinical course and disease progression are widely heterogeneous, but most patients have been reported to show signs such as skeletal deformities or cognitive delay. Additionally, detection criteria are not standardized, resulting in delayed diagnosis and treatment. Methods We present a cohort of 9 patients with mucopolysaccharidosis VII diagnosed in the Iberian Peninsula, either in Spain or Portugal. The diagnostic approach, genetic studies, clinical features, evolution and treatment interventions were reviewed. Results We found that skeletal deformities, hip dysplasia, hydrops fetalis, hepatosplenomegaly, hernias, coarse features, respiratory issues, and cognitive and growth delay were the most common features identified in the cohort. In general, patients with early diagnostic confirmation who received the appropriate treatment in a timely manner presented a more favorable clinical evolution. Conclusions This case series report helps to improve understanding of this ultra-rare disease and allows to establish criteria for clinical suspicion or diagnosis, recommendations, and future directions for better management of patients with Sly syndrome.


2021 ◽  
Vol 161 ◽  
pp. 105454
Author(s):  
María Concepción Miranda-Herrero ◽  
María Vázquez-López ◽  
Estibaliz Barredo-Valderrama ◽  
Pedro de Castro de Castro ◽  
Almudena Chacón-Pascual ◽  
...  

Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1344
Author(s):  
Dorothea D Jenkins ◽  
Hunter G Moss ◽  
Truman R Brown ◽  
Milad Yazdani ◽  
Sudhin Thayyil ◽  
...  

N-acetylcysteine (NAC) and vitamin D provide effective neuroprotection in animal models of severe or inflammation-sensitized hypoxic ischemic encephalopathy (HIE). To translate these FDA-approved drugs to HIE neonates, we conducted an early phase, open-label trial of 10 days of NAC (25, 40 mg/kg q12h) + 1,25(OH)2D (calcitriol 0.05 mg/kg q12h, 0.03 mg/kg q24h), (NVD), for pharmacokinetic (PK) estimates during therapeutic hypothermia and normothermia. We paired PK samples with pharmacodynamic (PD) targets of plasma isoprostanoids, CNS glutathione (GSH) and total creatine (tCr) by serial MRS in basal ganglia (BG) before and after NVD infusion at five days. Infants had moderate (n = 14) or severe HIE (n = 16), funisitis (32%), and vitamin D deficiency (75%). NVD resulted in rapid, dose-responsive increases in CNS GSH and tCr that correlated positively with plasma [NAC], inversely with plasma isofurans, and was greater in infants with lower baseline [GSH] and [tCr], suggesting increases in these PD markers were titrated by neural demand. Hypothermia and normothermia altered NAC PK estimates. NVD was well tolerated. Excluding genetic syndromes (2), prolonged ECMO (2), lost-to-follow-up (1) and SIDS death (1), 24 NVD treated HIE infants have no evidence of cerebral palsy, autism or cognitive delay at 24–48 months. These data confirm that low, safe doses of NVD in HIE neonates decreased oxidative stress in plasma and CNS, improved CNS energetics, and are associated with favorable developmental outcomes at two to four years.


2021 ◽  
Vol 40 (5) ◽  
pp. 335-339
Author(s):  
Kathleen J. Hagenauer ◽  
Jeanne Perino

Unrecognized congenital hypothyroidism (CH) is the most common cause of preventable cognitive delay in children. Infants with CH appear normal and are usually asymptomatic at birth. Early detection is critical for prevention of intellectual disability. Standardized newborn screening can have a positive impact on cognitive development in infants with CH.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuan Liu ◽  
Hongke Ding ◽  
Tizhen Yan ◽  
Ling Liu ◽  
Lihua Yu ◽  
...  

PACS1 neurodevelopmental disorder (PACS1-NDD) is a category of rare disorder characterized by intellectual disability, speech delay, dysmorphic facial features, and developmental delay. Other various physical abnormalities of PACS1-NDD might involve all organs and systems. Notably, there were only two unique missense mutations [c.607C &gt; T (p.Arg203Trp) and c.608G &gt; A (p.Arg203Gln)] in PACS1 that had been identified as pathogenic variants for PACS1-NDD or Schuurs-Hoeijmakers syndrome (SHMS). Previous reports suggested that these common missense variants were likely to act through dominant-negative or gain-of-function effects manner. It is still uncertain whether the intragenic deletion or duplication in PACS1 will be disease-causing. By using whole-exome sequencing, we first identified a novel heterozygous multi-exon deletion covering exons 12–24 in PACS1 (NM_018026) in four individuals (two brothers and their father and grandfather) in a three-generation family. The younger brother was referred to our center prenatally and was evaluated before and after the birth. Unlike SHMS, no typical dysmorphic facial features, intellectual problems, and structural brain anomalies were observed among these four individuals. The brothers showed a mild hypermyotonia of their extremities at the age of 3 months old and recovered over time. Mild speech and cognitive delay were also noticed in the two brothers at the age of 13 and 27 months old, respectively. However, their father and grandfather showed normal language and cognitive competence. This study might supplement the spectrum of PACS1-NDD and demonstrates that the loss of function variation in PACS1 displays no contributions to the typical SHMS which is caused by the recurrent c.607C &gt; T (p.Arg203Trp) variant.


Sign in / Sign up

Export Citation Format

Share Document