rc structures
Recently Published Documents


TOTAL DOCUMENTS

1115
(FIVE YEARS 353)

H-INDEX

40
(FIVE YEARS 8)

Structures ◽  
2022 ◽  
Vol 37 ◽  
pp. 338-352
Author(s):  
Ibrahim M.H. Alshaikh ◽  
Aref A. Abadel ◽  
Mohammed Alrubaidi

2022 ◽  
Vol 11 (1) ◽  
pp. 1-19
Author(s):  
Abbas Fathi ◽  
Georges El-Saikaly ◽  
Omar Chaallal

Reinforced concrete (RC) structures subjected to cyclic fatigue loading are prone to progressive damage. Among the types of structural damage, those leading to shear deficiencies can result in sudden rupture of structures without warning. Hence, RC structures deficient in shear urgently need retrofitting. The use of externally bonded (EB) fiber-reinforced polymer (FRP) composites presents many advantages and is a very promising technology for shear strengthening of RC structures. This paper encompasses a wide range of research findings related to the interaction between concrete and FRP under fatigue loading. The behavior of the bond between FRP and concrete plays a major role in the failure mode of FRP shear-strengthened structures especially under fatigue. Therefore, it is of interest to characterize the FRP/concrete interaction using appropriate models with respect to the influencing parameters. The paper will first discuss existing design guidelines and considerations related to the fatigue behavior of RC structures. A thorough review of available literature on EB-FRP/concrete bond in shear under cyclic fatigue loading will then be presented, with a focus on proposed bond-slip models and finite element studies of the FRP/concrete interface under fatigue loading.


2022 ◽  
Vol 961 (1) ◽  
pp. 012012
Author(s):  
S F Sadeq ◽  
B R Muhammad ◽  
A J Al-Zuheriy

Abstract This paper present outside strengthening with precast substructures, is a relatively new retrofitting approach that has recently attracted the attention of researchers. Outside strengthening with precast substructure, in contrast to member-level strengthening technologies (e.g., FRP strengthening, enlarging member section areas, and replacing rebars), is a structure-system reinforcement method that integrates the substructure and the original structure, improves overall seismic performance, and changes the deformation mode of the entire structure. The seismic capability of the exterior strengthening with precast bolt-connected steel-plate reinforced concrete is critically evaluated in this paper (PBSPC) Case studies are used to demonstrate the working principles, numerical methodologies, and design approaches. The simulation results were similar with prior studies, demonstrating that the numerical model was effective. The use of building steel representations reduces construction time, increases efficiency, and lowers costs. The goal of this technology is to lower the seismic displacement demand of nonductile. Current RC structures have steel frames connecting to the building floors. These frameworks run parallel to the structure of the building. Ganjan Life City, a building in Erbil, Iraq, is being used as a case study. The ISC 2017 and ASCE 7-10 earthquake codes were used to evaluate the building’s seismic performance before and after the reinforcement. The analysis’ findings suggest that the recommended technique is correct.


Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 665
Author(s):  
Hossameldeen Mohamed ◽  
Xavier Romão

The proposed study develops fragility functions for non-seismically designed reinforced concrete structures considering different pounding configurations. The study addresses an existing research gap, since large-scale seismic risk assessment studies involving the seismic performance assessment of building portfolios usually do not involve fragility functions accounting for the possibility of pounding. The selected structures include configurations involving different separation distance values and exhibiting floor-to-floor pounding, floor-to-column pounding, pounding between structures with a significant height difference, and pounding between structures with a significant mass difference. The behaviour of these pounding configurations was analysed using incremental dynamic analysis and compared with that of the corresponding control cases (i.e., individual structures with no interaction with other structures). The results indicate the type of failure mechanism that contributes to the global collapse of the different configurations and the influence of the separation distance. Results highlight the main differences between the expected performance of different pounding configurations with respect to the occurrence of the failure mechanism that governs their collapse. Finally, results indicate that large-scale seismic risk assessment studies should consider fragility functions accounting for different pounding configurations when the possibility of pounding is not negligible, except in cases involving floor-to-floor pounding.


Mathematics ◽  
2021 ◽  
Vol 9 (24) ◽  
pp. 3296
Author(s):  
Chenxing Cui ◽  
Li Song ◽  
Jinliang Liu ◽  
Zhiwu Yu

The coupled action of concrete carbonation and repeated loading strongly influences the safety of reinforced concrete (RC) structures and substantially reduces service life. A novel corrosion-fatigue life prediction model for RC structures under coupled carbonation and repeated loading was developed. The effect of fatigue damage on concrete carbonation and carbonation-induced corrosion rate was considered, and the acceleration of fatigue damage accumulation due to reinforcement corrosion was considered in this approach. The proposed corrosion-fatigue life prediction model was illustrated by a 6 m-span RC slab in a simply supported slab bridge for the highway, and the effects of traffic frequency, overloading, carbonation environment grade, and environmental temperature and relative humidity on corrosion-fatigue life were discussed. The results indicate that the proposed model can predict the corrosion-fatigue life of RC structures simply and conveniently. Traffic frequency, overloading, carbonation environment grade, and environmental temperature and relative humidity can decrease the corrosion-fatigue life of the RC slab by up to 66.86%, 58.90%, 77.45%, and 44.95%, respectively. The research is expected to provide a framework for the corrosion-fatigue life prediction of RC structures under coupled carbonation and repeated loading.


2021 ◽  
Vol 2021 (2) ◽  
pp. 1-6
Author(s):  
Roman Tytarenko ◽  
◽  
Roman Khmil ◽  
Iryna Dankevych ◽  
◽  
...  

The article presents a theoretical analysis of existing concepts to evaluate the non-failure of RC structures in operation. To perform the analysis, the authors considered a number of scientific works of both Ukrainian and foreign researchers. The main focus was on works in which the model of the stochastic nature of the RC structure operation included random parameters of acting loads, as well as the reserve of its bearing capacity and serviceability (geometric dimensions of cross sections of constructive members, strength and deformation characteristics of materials, etc.). Among others, according to the authors, important problems in terms of analysis of a single work were the volume of statistical selection of random parameters, their number and impact on the study result, as well as rationality of the adopted method of calculating the probability of failure (or non-failure work) of RC structure in operation. Based on the processing of a number of scientific works, the authors highlight the relevance, advantages and disadvantages of the concepts of non-failure assessment proposed there, as well as the formulate the conclusions and recommendations for further experimental and theoretical research in this area.


2021 ◽  
Vol 13 (24) ◽  
pp. 13695
Author(s):  
Robert E. Melchers ◽  
Igor A. Chaves

Even in harsh marine environments, concrete structures reinforced with steel can show excellent long-term durability, with little or no reinforcement corrosion. Very few actual reinforced concrete (RC) structures have been closely scrutinized over many years and subject to interpretation using recent state-of-the-art understanding gained from detailed laboratory observations. Such a case is described for an 80-year-old RC structure observed annually over about 30 years in what is essentially an extraordinary long experiment. Despite very high chloride concentrations, field excavation evidence showed that reinforcement corrosion overall remains minimal, except where insufficient concrete compaction permitted air-voids to initiate quite severe, very localized corrosion even with still high concrete pH. It is possible that the use of blast furnace slag as aggregate may have assisted the observed durability. The case study supports other studies that show that it is possible to achieve long-term durable and therefore sustainable RC structures without additives and using only conventional reinforcement steels and conventional cements and aggregates. However, the potential dangers of deep narrow cracking extending to the reinforcement and the potentially deleterious effects of alkali–aggregate reactivity of some aggregates needs to be considered.


2021 ◽  
Vol 11 (24) ◽  
pp. 11737
Author(s):  
Hui Jin ◽  
Qing Chun ◽  
Chengwen Zhang ◽  
Yidan Han

Square rebars were developed and used for decades in the early development of reinforced concrete (RC) structures; however, the objectives of modern concrete structure durability analyses and standards are centered on round rebars in past decades, which are not suited for RC buildings utilizing square rebars. Considering the absence of proper evaluation techniques to evaluate the square rebar RC structures’ durability accurately, a novel durability prediction method has been proposed for this type of historical building. The method is based on major parts as in-situ investigation, finite element model simulation, component importance analysis, and structural durability prediction. The durability prediction calculation method was established on the experimental results of the realistic historical concrete tests and corrosion-induced cover cracking experiments for square rebar components. It was found that the carbonization-resistant ability of historical concretes was relatively weaker than that of current concretes and the calculation method for critical corrosion depth of square rebar was different from that of round rebar. Furthermore, two typical application cases are presented to introduce the procedure of the method in detail. Consequently, the research outcomes can be directly used on the durability prediction and protection works for historical RC buildings.


Sign in / Sign up

Export Citation Format

Share Document