spatial and temporal scales
Recently Published Documents


TOTAL DOCUMENTS

1452
(FIVE YEARS 633)

H-INDEX

67
(FIVE YEARS 9)

2022 ◽  
Vol 8 ◽  
Author(s):  
Mladen Šolić ◽  
Danijela Šantić ◽  
Stefanija Šestanović ◽  
Grozdan Kušpilić ◽  
Frano Matić ◽  
...  

The mechanisms responsible for the development of various structural and functional features of the microbial food web (MFW) and their dynamics at spatial and temporal scales, which are important for predicting their responses to future environmental changes, are largely unknown. More than 3000 datasets of environmental and microbial variables collected over a decade on a seasonal and large spatial scale in the Adriatic Sea were analyzed. The sets of environmental variables were classified into four clusters (representing different environmental states) using Neural Gas analysis and the differences in MFW structure between the clusters were analyzed. Different variants of MFW evolve in the different clusters in terms of the abundance of MFW components, their ratios, growth and grazing rates, predator preference in prey selection, the strength of predator-prey interaction, and the relative importance of top-down and bottom-up control. However, these clusters are neither spatially nor temporally fixed; rather, the area studied represents a mosaic of different environmental conditions that alternate from one state to another on a time scale. In each of the environmental states, a distinct structure of MFW develops that shows consistent and repeatable changes that strictly follow the switching in environmental conditions from one state to another.


2022 ◽  
Author(s):  
Lena Katharina Schmidt ◽  
Till Francke ◽  
Erwin Rottler ◽  
Theresa Blume ◽  
Johannes Schöber ◽  
...  

Abstract. Climatic changes are expected to fundamentally alter discharge and sediment dynamics in glaciated high alpine areas, e.g. through glacier retreat, prolonged snow-free periods and more frequent intense rainfall events in summer. However, how exactly these hydrological changes will affect sediment dynamics is not yet known. In the present study, we aim to pinpoint areas and processes most relevant to recent sediment and discharge dynamics on different spatial and temporal scales in the Ötztal Alpine Region in Tyrol, Austria. Therefore, we analyze observed discharge and relatively long suspended sediment time series of up to 15 years from three gauges in a nested catchment setup. The catchments range from 100 to almost 800 km2 in size with 10 to 30 % glacier cover and span an elevation range of 930 to 3772 m a.s.l.. The investigation of satellite-based snow cover maps, glacier inventories, mass balances and precipitation data complement the analysis. Our results indicate that mean annual specific discharge and suspended sediment fluxes are highest in the most glaciated sub-catchment and both fluxes correlate significantly with annual glacier mass balances. Furthermore, both discharge and suspended sediment loads show a distinct seasonality with low values during winter and high values during summer. However, the spring onset of sediment transport is almost synchronous at the three gauges, contrary to the spring rise in discharge, which occurs earlier further downstream. A spatio-temporal analysis of snow cover evolution indicates that the spring increase in sediment fluxes at all gauges coincides with the onset of snow melt above 2500 m elevation. Zones above this elevation include glacier tongues and recently deglaciated areas, which seem to be crucial for the sediment dynamics in the catchment. Precipitation events in summer were associated with peak sediment concentrations and fluxes, but on average accounted for only 21 % of the annual sediment yields of the years 2011 to 2020. We conclude that glaciers and the areas above 2500 m elevation play a dominant role for discharge and sediment dynamics in the Ötztal area, while precipitation events play a secondary role. Our study extends the scientific knowledge on current hydro-sedimentological changes in glaciated high alpine areas and provides a baseline for investigations on projected future changes in hydro-sedimentological system dynamics.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Dónall Eoin Cross ◽  
Amy J. E. Healey ◽  
Niall J. McKeown ◽  
Christopher James Thomas ◽  
Nicolae Adrian Macarie ◽  
...  

AbstractRegional optimisation of malaria vector control approaches requires detailed understanding both of the species composition of Anopheles mosquito communities, and how they vary over spatial and temporal scales. Knowledge of vector community dynamics is particularly important in settings where ecohydrological conditions fluctuate seasonally and inter-annually, such as the Barotse floodplain of the upper Zambezi river. DNA barcoding of anopheline larvae sampled in the 2019 wet season revealed the predominance of secondary vector species, with An. coustani comprising > 80% of sampled larvae and distributed ubiquitously across all ecological zones. Extensive larval sampling, plus a smaller survey of adult mosquitoes, identified geographic clusters of primary vectors, but represented only 2% of anopheline larvae. Comparisons with larval surveys in 2017/2018 and a contemporaneous independent 5-year dataset from adult trapping corroborated this paucity of primary vectors across years, and the consistent numerical dominance of An. coustani and other secondary vectors in both dry and wet seasons, despite substantial inter-annual variation in hydrological conditions. This marked temporal consistency of spatial distribution and anopheline community composition presents an opportunity to target predominant secondary vectors outdoors. Larval source management should be considered, alongside prevalent indoor-based approaches, amongst a diversification of vector control approaches to more effectively combat residual malaria transmission.


2022 ◽  
Vol 3 ◽  
Author(s):  
Tufa Dinku ◽  
Rija Faniriantsoa ◽  
Remi Cousin ◽  
Igor Khomyakov ◽  
Audrey Vadillo ◽  
...  

Despite recent and mostly global efforts to promote climate services in developing countries, Africa still faces significant limitations in its institutional infrastructure and capacity to develop, access, and use decision-relevant climate data and information products at multiple levels of governance. The Enhancing National Climate Services (ENACTS) initiative, led by Columbia University's International Research Institute for Climate and Society (IRI), strives to overcome these challenges by co-developing tailored, actionable, and decision-relevant climate information with and for a wide variety of users at the local, regional, and national levels. This is accomplished through an approach emphasizing direct engagement with the National Meteorological and Hydrological Services (NMHS) and users of their products, and investments in both technological and human capacities for improving the availability, access, and use of quality climate data and information products at decision-relevant spatial and temporal scales. In doing so, the ENACTS approach has been shown to be an effective means of transforming decision-making surrounding vulnerabilities and risks at multiple scales, through implementation in over a dozen countries at national level as well as at the regional levels in both East and West Africa. Through the ENACTS approach, challenges to availability of climate data are alleviated by combining quality-controlled station observations with global proxies to generate spatially and temporally complete climate datasets. Access to climate information is enhanced by developing an online mapping service that provides a user-friendly interface for analyzing and visualizing climate information products. Use of the generated climate data and the derived information products is promoted through raising awareness in relevant communities, training users, and co-production processes.


Hydrology ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 7
Author(s):  
Bachisio Mario Padedda ◽  
Antonella Lugliè ◽  
Giuseppina Grazia Lai ◽  
Filippo Giadrossich ◽  
Cecilia Teodora Satta ◽  
...  

In water management plans, all human impacts on the aquatic environment are quantified and evaluated. For this purpose, lake-related assessment methods of watersheds are needed. The aim of this study is to present the environmental condition along the watershed–lake continuum of Lake Baratz, located in the northeastern part of Sardinia. We provide a method to evaluate the impact of a small watershed area on the trophic state of this ancient Mediterranean natural lake. This study demonstrates the potentialities of coupling simple land structure-based models with empirical ones, allowing one to hierarchize, interpret, and predict the relationships among the watershed ecological unity and lake trophic conditions at multiple spatial and temporal scales. It also demonstrates how the impact of single and interacting nutrient stressors can have a different impact on the trophic status which, in particular, applies to autotrophs, constituting a key response in the ecosystem. We suggest that the stressor hierarchy should be considered as a way of prioritizing actions in the cost-effective implementation of conservation and management plans.


Author(s):  
Elizabeth La Rue ◽  
Robert Fahey ◽  
Tabatha Fuson ◽  
Jane Foster ◽  
Jaclyn Hatala Matthes ◽  
...  

Recent expansion in data sharing has created unprecedented opportunities to explore structure-function linkages in ecosystems across spatial and temporal scales. However, characteristics of the same data product, such as resolution, can change over time or spatial locations, as protocols are adapted to new technology or conditions, which may impact the data’s potential utility and accuracy for addressing end user scientific questions. The National Ecological Observatory Network (NEON) provides data products for users from 81 sites and over a planned 30-year time frame, including discrete return Light Detection and Range (LiDAR) from an airborne observatory platform. LiDAR is a well-established and increasingly available remote sensing technology for measuring three-dimensional (3D) characteristics of ecosystem and landscape structure, including forest structural diversity. The LiDAR product that NEON provides can vary in point density from 2 – 25+ points/m2 depending on instrument and acquisition date. We used NEON LiDAR from five forested sites to (1) identify the minimum point density at which structural diversity metrics can be robustly estimated across forested sites from different ecoclimatic zones in the USA and (2) to test the effects of variable point density on the estimation of a suite of structural diversity metrics and multivariate structural complexity types within and across forested sites. Twelve out of sixteen structural diversity metrics were sensitive to LiDAR point density in at least one of the five NEON forested sites. The minimum point density to reliably estimate the metrics ranged from 2.0 to 7.5 pt/m2, but our results indicate that point densities above 7-8 pt/m2 should provide robust measurements of structural diversity in forests for temporal or spatial comparisons. The delineation of multivariate structural complexity types from a suite of 16 structural diversity metrics was robust within sites and across forest types for a LiDAR point density of 4 pt/m2 and above. This study shows that different metrics of structural diversity can vary in their sensitivity to the resolution of LiDAR data and users of these open-source data products should consider the point density of their data and use caution in metric selection when making spatial or temporal comparisons from these datasets.


2021 ◽  
Vol 15 (12) ◽  
pp. 5785-5804
Author(s):  
Peter A. Tuckett ◽  
Jeremy C. Ely ◽  
Andrew J. Sole ◽  
James M. Lea ◽  
Stephen J. Livingstone ◽  
...  

Abstract. Surface meltwater is widespread around the Antarctic Ice Sheet margin and has the potential to influence ice shelf stability, ice flow and ice–albedo feedbacks. Our understanding of the seasonal and multi-year evolution of Antarctic surface meltwater is limited. Attempts to generate robust meltwater cover time series have largely been constrained by computational expense or limited ice surface visibility associated with mapping from optical satellite imagery. Here, we add a novel method for calculating visibility metrics to an existing meltwater detection method within Google Earth Engine. This enables us to quantify uncertainty induced by cloud cover and variable image data coverage, allowing time series of surface meltwater area to be automatically generated over large spatial and temporal scales. We demonstrate our method on the Amery Ice Shelf region of East Antarctica, analysing 4164 Landsat 7 and 8 optical images between 2005 and 2020. Results show high interannual variability in surface meltwater cover, with mapped cumulative lake area totals ranging from 384 to 3898 km2 per melt season. By incorporating image visibility assessments, however, we estimate that cumulative total lake areas are on average 42 % higher than minimum mapped values. We show that modelled melt predictions from a regional climate model provide a good indication of lake cover in the Amery region and that annual lake coverage is typically highest in years with a negative austral summer SAM index. Our results demonstrate that our method could be scaled up to generate a multi-year time series record of surface water extent from optical imagery at a continent-wide scale.


2021 ◽  
Author(s):  
Julia Windmiller ◽  
Bjorn Stevens ◽  
Henning Franke ◽  
Ilaria Quaglia ◽  
Katharina Stolla ◽  
...  

<p class="p1">The intertropical convergence zone (ITCZ) plays a central role for the tropical weather and climate and structures the large-scale circulation. As a result, the ITCZ has long been an intensively studied research topic, with most studies of the ITCZ focusing on its long-term and large-scale characteristics. However, recent modeling results have highlighted the role of storm-scale processes in the formation of the ITCZ, suggesting that our limited ability to represent these small-scale processes correctly may contribute to persistent errors in the representation of the ITCZ in climate models. Looking at the ITCZ on short spatial and temporal scales, even the question of where the low-level convergence in the ITCZ occurs appears to be unclear. Do the trade winds from the north and south meet in a narrow line of convergence, or are there two lines of convergence marking the northern and southern edges of the ITCZ? To answer this question, we performed measurements on board the German research vessel Sonne during the campaign "Mooring Rescue" in the tropical Atlantic in summer 2021. During the campaign, the thermodynamic and dynamical state of the atmosphere was measured by frequent radiosonde launches, which provided atmospheric profiles with high vertical resolution extending from the surface to the lower stratosphere. These measurements were supplemented by continuous measurements of the atmospheric boundary layer and lower free troposphere, including optical measurements of water vapor, aerosol, precipitation, wind speed and direction, and cloud base height. Here, we provide a brief overview of the atmospheric measurements and a preliminary assessment of the dynamic state observed during a north-south crossing of the ITCZ. The ship-based measurements were compared with long-term statistics from reanalysis data and satellite observations.<span class="Apple-converted-space"> </span></p>


Development ◽  
2021 ◽  
Vol 148 (24) ◽  
Author(s):  
Jesse V. Veenvliet ◽  
Pierre-François Lenne ◽  
David A. Turner ◽  
Iftach Nachman ◽  
Vikas Trivedi

ABSTRACT During embryogenesis, organisms acquire their shape given boundary conditions that impose geometrical, mechanical and biochemical constraints. A detailed integrative understanding how these morphogenetic information modules pattern and shape the mammalian embryo is still lacking, mostly owing to the inaccessibility of the embryo in vivo for direct observation and manipulation. These impediments are circumvented by the developmental engineering of embryo-like structures (stembryos) from pluripotent stem cells that are easy to access, track, manipulate and scale. Here, we explain how unlocking distinct levels of embryo-like architecture through controlled modulations of the cellular environment enables the identification of minimal sets of mechanical and biochemical inputs necessary to pattern and shape the mammalian embryo. We detail how this can be complemented with precise measurements and manipulations of tissue biochemistry, mechanics and geometry across spatial and temporal scales to provide insights into the mechanochemical feedback loops governing embryo morphogenesis. Finally, we discuss how, even in the absence of active manipulations, stembryos display intrinsic phenotypic variability that can be leveraged to define the constraints that ensure reproducible morphogenesis in vivo.


Author(s):  
Christian L. E. Franzke ◽  
Alessio Ciullo ◽  
Elisabeth A. Gilmore ◽  
Denise Margaret Matias ◽  
Nidhi Nagabhatla ◽  
...  

Abstract The Earth system and the human system are intrinsically linked. Anthropogenic greenhouse gas emissions have led to the climate crisis, which is causing unprecedented extreme events and could trigger Earth system tipping elements. Physical and social forces can lead to tipping points and cascading effects via feedbacks and telecoupling, but the current generation of climate-economy models do not generally take account of these interactions and feedbacks. Here, we show the importance of the interplay between human societies and Earth systems in creating tipping points and cascading effects and the way they in turn affect sustainability and security. The lack of modeling of these links can lead to an underestimation of climate and societal risks as well as how societal tipping points can be harnessed to moderate physical impacts. This calls for the systematic development of models for a better integration and understanding of Earth and human systems at different spatial and temporal scales, specifically those that enable decision-making to reduce the likelihood of crossing local or global tipping points.


Sign in / Sign up

Export Citation Format

Share Document