lung regeneration
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 58)

H-INDEX

19
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Marius Lange ◽  
Volker Bergen ◽  
Michal Klein ◽  
Manu Setty ◽  
Bernhard Reuter ◽  
...  

AbstractComputational trajectory inference enables the reconstruction of cell state dynamics from single-cell RNA sequencing experiments. However, trajectory inference requires that the direction of a biological process is known, largely limiting its application to differentiating systems in normal development. Here, we present CellRank (https://cellrank.org) for single-cell fate mapping in diverse scenarios, including regeneration, reprogramming and disease, for which direction is unknown. Our approach combines the robustness of trajectory inference with directional information from RNA velocity, taking into account the gradual and stochastic nature of cellular fate decisions, as well as uncertainty in velocity vectors. On pancreas development data, CellRank automatically detects initial, intermediate and terminal populations, predicts fate potentials and visualizes continuous gene expression trends along individual lineages. Applied to lineage-traced cellular reprogramming data, predicted fate probabilities correctly recover reprogramming outcomes. CellRank also predicts a new dedifferentiation trajectory during postinjury lung regeneration, including previously unknown intermediate cell states, which we confirm experimentally.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3467
Author(s):  
Amel Nasri ◽  
Florent Foisset ◽  
Engi Ahmed ◽  
Zakaria Lahmar ◽  
Isabelle Vachier ◽  
...  

Mesenchymal cells are an essential cell type because of their role in tissue support, their multilineage differentiation capacities and their potential clinical applications. They play a crucial role during lung development by interacting with airway epithelium, and also during lung regeneration and remodeling after injury. However, much less is known about their function in lung disease. In this review, we discuss the origins of mesenchymal cells during lung development, their crosstalk with the epithelium, and their role in lung diseases, particularly in chronic obstructive pulmonary disease.


Author(s):  
Arvind Konkimalla ◽  
Aleksandra Tata ◽  
Purushothama Rao Tata
Keyword(s):  

Author(s):  
Söderlund Zackarias ◽  
Linda Elowsson Rendin ◽  
Solmaz Hajizadeh ◽  
Emil Tykesson ◽  
Arturo Ibáñez-Fonseca ◽  
...  
Keyword(s):  

Author(s):  
Ifeolu Akinnola ◽  
Daniel R. Rossi ◽  
Carolyn Meyer ◽  
Ashley Lindsey ◽  
Douglas R. Haase ◽  
...  

Tissue engineering using decellularized whole lungs as matrix scaffolds began as a promise for creating autologous transplantable lungs for patients with end-stage lung disease and can also be used to study strategies for lung regeneration. Vascularization remains a critical component for all solid organ bioengineering, yet there has been limited success in generating functional re-endothelialization of most pulmonary vascular segments. We evaluated recellularization of the blood vessel conduits of acellular mouse scaffolds with highly proliferating, rat pulmonary microvascular endothelial progenitor cells (RMEPCs), pulmonary arterial endothelial cells (PAECs) or microvascular endothelial cells (MVECs). After 8 days of pulsatile perfusion, histological analysis showed that PAECs and MVECs possessed selective tropism for larger vessels or microvasculature, respectively. In contrast, RMEPCs lacked site preference and repopulated all vascular segments. RMEPC-derived endothelium exhibited thrombomodulin activity, expression of junctional genes, ability to synthesize endothelial signaling molecules, and formation of a restrictive barrier. The RMEPC phenotype described here could be useful for identifying endothelial progenitors suitable for efficient vascular organ and tissue engineering, regeneration and repair.


2021 ◽  
Author(s):  
Huanbin Liu ◽  
Yidi Zhang ◽  
Jinjun Jiang ◽  
Yulong Luo ◽  
Jingxin Zhao ◽  
...  

Abstract Background: Recent studies have demonstrated that airway basal stem cells (BCs) transplantation can ameliorate bleomycin-induced idiopathic pulmonary fibrosis (IPF) through lung regeneration promotion. However, BCs under oxidative stress in the alveolar microenvironment are poor in survival, causing unsatisfied efficacy of BCs transplantation. In this study, we investigated whether Coenzyme Q10(CoQ10) counteracts oxidative stress in the alveolar microenvironment, thus improved the efficacy of BCs transplantation for IPF treatment.Methods: The protective effects of CoQ10 on H2O2-induced BCs apoptosis and cytoplasmic reactive oxygen species (ROS) level were tested by flow cytometry in vitro. The therapeutic effects of BCs combined with CoQ10 were compared to a single BCs transplantation protocol in IPF treatment after two weeks and were evaluated by parameters including changes of body weight and survival rate, as well as various levels of pulmonary inflammation, α-SMA expression and hydroxyproline (HYP) in IPF mice lung tissues.Results: CoQ 10 preincubation with BCs (10 mM, 24 h) significantly reduced the late apoptosis of BCs and the number of oxidative stressful BCs as a result of H2O2 stimulation (1mM, 6h) in vitro. IPF mice models were constructed through bleomycin (5 mg/Kg) intratracheal instillation. Bleomycin-induced IPF mice showed weight loss continuously and mortality increased progressively during modeling. Serious pulmonary inflammatory cell infiltration, collagen fiber proliferation, and collagen protein deposition were observed in lung tissues of IPF mice. Though BCs transplantation alone improved indicators above in bleomycin-induced IPF mice to some extent, the combination with CoQ10 improved the transplantation efficacy and obtained better therapeutic effects.Conclusion:CoQ10 blocked H2O2-induced apoptosis of BCs and ROS production in vitro, and enhanced the efficacy of BCs transplantation on bleomycin-induced IPF in mice.


2021 ◽  
Vol 65 (1) ◽  
pp. 118-121
Author(s):  
Tara N. Rindler ◽  
Kari M. Brown ◽  
Courtney A. Stockman ◽  
Laura P. van Lieshout ◽  
Emily P. Martin ◽  
...  

2021 ◽  
Author(s):  
Yuanyuan Chen ◽  
Reka Toth ◽  
Sara Chocarro ◽  
Dieter Weichenhan ◽  
Joschka Hey ◽  
...  

The high plasticity of lung epithelial cells, has for many years, confounded the correct identification of the cell-of-origin of lung adenocarcinoma (LUAD), one of the deadliest malignancies worldwide. Here, we address the cell-of-origin of LUAD, by employing lineage-tracing mouse models combined with a CRISPR/Cas9 system to induce an oncogenic Eml4-Alk rearrangement in virtually all epithelial cell types of the lung. We find that Club cells give rise to lung tumours with a higher frequency than AT2 cells. Based on whole genome methylome, we identified that tumours retain an epigenetic memory derived from their originating cell type but also develop a tumour-specific pattern regardless of their origin. Single-cell transcriptomic analyses identified two trajectories of Club cell evolution which are similar to the ones used during lung regeneration, providing a link between lung regeneration and cancer initiation. On both routes, tumours lose their Club cell identity and gain an AT2-like phenotype. Together, this study highlights the role of Club cells in LUAD initiation and unveils key mechanisms conferring LUAD heterogeneity.


2021 ◽  
Vol 22 (11) ◽  
pp. 5599
Author(s):  
Evgenii Skurikhin ◽  
Pavel Madonov ◽  
Olga Pershina ◽  
Natalia Ermakova ◽  
Angelina Pakhomova ◽  
...  

Concentration of hyaluronic acid (HA) in the lungs increases in idiopathic pulmonary fibrosis (IPF). HA is involved in the organization of fibrin, fibronectin, and collagen. HA has been proposed to be a biomarker of fibrosis and a potential target for antifibrotic therapy. Hyaluronidase (HD) breaks down HA into fragments, but is a subject of rapid hydrolysis. A conjugate of poloxamer hyaluronidase (pHD) was prepared using protein immobilization with ionizing radiation. In a model of bleomycin-induced pulmonary fibrosis, pHD decreased the level of tissue IL-1β and TGF-β, prevented the infiltration of the lung parenchyma by CD16+ cells, and reduced perivascular and peribronchial inflammation. Simultaneously, a decrease in the concentrations of HA, hydroxyproline, collagen 1, total soluble collagen, and the area of connective tissue in the lungs was observed. The effects of pHD were significantly stronger compared to native HD which can be attributed to the higher stability of pHD. Additional spiperone administration increased the anti-inflammatory and antifibrotic effects of pHD and accelerated the regeneration of the damaged lung. The potentiating effects of spiperone can be explained by the disruption of the dopamine-induced mobilization and migration of fibroblast progenitor cells into the lungs and differentiation of lung mesenchymal stem cells (MSC) into cells of stromal lines. Thus, a combination of pHD and spiperone may represent a promising approach for the treatment of IPF and lung regeneration.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Amirhossein Ahmadi ◽  
Sharif Moradi

AbstractCOVID-19 has currently become the biggest challenge in the world. There is still no specific medicine for COVID-19, which leaves a critical gap for the identification of new drug candidates for the disease. Recent studies have reported that the small-molecule enoxacin exerts an antiviral activity by enhancing the RNAi pathway. The aim of this study is to analyze if enoxacin can exert anti-SARS-CoV-2 effects. We exploit multiple computational tools and databases to examine (i) whether the RNAi mechanism, as the target pathway of enoxacin, could act on the SARS-CoV-2 genome, and (ii) microRNAs induced by enoxacin might directly silence viral components as well as the host cell proteins mediating the viral entry and replication. We find that the RNA genome of SARS-CoV-2 might be a suitable substrate for DICER activity. We also highlight several enoxacin-enhanced microRNAs which could target SARS-CoV-2 components, pro-inflammatory cytokines, host cell components facilitating viral replication, and transcription factors enriched in lung stem cells, thereby promoting their differentiation and lung regeneration. Finally, our analyses identify several enoxacin-targeted regulatory modules that were critically associated with exacerbation of the SARS-CoV-2 infection. Overall, our analysis suggests that enoxacin could be a promising candidate for COVID-19 treatment through enhancing the RNAi pathway.


Sign in / Sign up

Export Citation Format

Share Document