improved oil recovery
Recently Published Documents


TOTAL DOCUMENTS

489
(FIVE YEARS 91)

H-INDEX

32
(FIVE YEARS 6)

Author(s):  
Tadeusz Patzek ◽  
Ahmed Saad ◽  
Ahmed Hassan

Improved oil recovery from tight carbonate formations may provide the world with a major source of lower-rate power over several decades. Here we provide an overview of the Arab D formation in the largest oil field on earth, the Ghawar. We investigate the occurrence of microporosity of different origins and sizes using scanning electron microscopy (SEM) and pore casting techniques. Then, we present a robust calculation of the probability of invasion and oil saturation distribution in the nested micropores using mercury injection capillary pressure data available in the literature. We show that large portions of the micropores in Arab D formation would have been bypassed during primary drainage unless the invading crude oil ganglia were sufficiently long. Considering the asphaltenic nature of oil in the Ghawar, we expect the invaded portions of the pores to turn mixed-wet, thus becoming inaccessible to waterflooding until further measures are taken to modify the system’s chemistry.


2022 ◽  
pp. 249-312
Author(s):  
Saeid Sadeghnejad ◽  
Marjan Ashrafizadeh ◽  
Meysam Nourani

2021 ◽  
Author(s):  
Christopher Venske ◽  
Ali Mohamed ◽  
Ammar Shaban ◽  
Nelson Maan ◽  
Dr. Colin Hill ◽  
...  

Abstract Tatweer Petroleum has been involved in a Pilot study to determine the efficacy of Organic Oil Recovery (OOR), a unique form of microbial enhanced oil recovery as a means of maximising oil recovery from its Rubble reservoir within the Awali field. OOR harnesses microbial life already present in an oil-bearing reservoir to improve oil recovery through changes in interfacial tensions, which in the case of Rubble will increase the heavy oil's mobility and improve recovery rates and reservoir wettability. These changes could increase recoverable reserves and extend field life through improved oil recovery with negligible topsides modifications. The Pilot injection is implemented by injecting a specific nutrient blend directly at the wellhead with ordinary pumping equipment. The well is then shut-in for an incubation period and thereafter returned to production. In Tatweer Petroleum's Awali field the Rubble reservoir is one of the shallowest oil reservoirs in the Bahrain and the first oil discovery in the Gulf Cooperation Council (GCC) region. The reservoir can be found at depths of around 1400 – 1900 ft. During initial laboratory testing of the Rubble target wells the reservoir showed a diverse and abundant resident ecology which has been proven capable of undergoing the necessary characteristic changes to facilitate enhanced production from the target wells. The Pilot test on one of these wells, called Well (A) within this paper, took place in July 2020 and due to this process, the ecology of this well showed these same changes in characteristics in the reservoir along with an associated oil response. The full method of implementation of the Pilot test will also be discussed in detail and will include any challenges and/or successes in this area. The initial state ecology reports of Well (A) are demonstrated and compared to that of post-Pilot test ecology. We also present the production figures for the well prior to and post the Pilot implementation. A correlation will be demonstrated between changes in ecology and an increase in production.


SPE Journal ◽  
2021 ◽  
pp. 1-16
Author(s):  
Miguel Mejía ◽  
Gary A. Pope ◽  
Haofeng Song ◽  
Matthew T. Balhoff

Summary New experiments using polyethylene oxide (PEO) polymer were performed to evaluate its potential for enhanced oil recovery (EOR) applications in low-permeability reservoirs. This is the first time that high molecular weight PEO solutions have been shown to have favorable transport in low-permeability (~20 md) carbonate cores and the first time PEO has been shown to improve oil recovery in a fractured carbonate core. Rheology measurements in synthetic seawater show the higher viscosity of PEO solutions compares favorably to the viscosity of acrylamide–sodium acrylate (AM-AA) copolymers of similar molecular weight because PEO is less sensitive to hardness and high salinity. Filtration experiments using 0.45 μm cellulose filters show very favorable filtration ratios of PEO with a molecular weight of 4 million g/mol, which is consistent with its favorable transport in low-permeability cores. Four coreflood experiments in Texas Cream Limestone (TC Limestone) cores demonstrate the viability of PEO for EOR in low-permeability carbonate rocks. Single-phase experiments show 4 million g/mol PEO solutions transported through 18 and 28 md TC Limestone cores. Oil recovery experiments show 4 million g/mol PEO solutions transported and was more efficient than waterflooding in aged TC Limestone with favorable retention of 40 µg/g rock. An oil recovery experiment in an artificially fractured TC Limestone core improved oil recovery by a remarkable 15% considering the very large fracture-matrix permeability contrast (>7,000). These experimental results as well as other favorable properties of PEO reported in the literature indicate PEO should be considered for some EOR applications, especially in low-permeability reservoirs.


2021 ◽  
Author(s):  
Mingyuan Wang ◽  
Gayan A. Abeykoon ◽  
Francisco J. Argüelles-Vivas ◽  
Ryosuke Okuno

Abstract This paper presents an experimental study of improved oil recovery from fractured shale cores by huff-n-puff of the aqueous solutions of 3-pentanone. The huff-n-puff experiments with different 3-pentanone concentrations were analyzed by the material balance for components: oil, brine, and 3-pentanone. Naturally sulfate-rich brine of low salinity was used as the injection brine. Results show that the 3-pentanone solution recovered more oil from the shale matrix than the injection brine alone. The oil recovery increased when the 3-pentanone concentration increased from 0.56-wt% to 2.85-wt%. Huff-n-puff with the 2.85-wt% 3-pentanone solution showed the highest improved oil recovery by 3-pentanone. However, the huff-n-puff experiment with the 1.07-wt% 3-pentanone solution showed the highest efficiency measured by the mass ratio of the produced oil to the injected 3-pentanone. That is, an optimal concentration of 3-pentanone appeared to exist. The material balance analysis showed that 3-pentanone was efficiently imbibed into the shale matrix, and that oil was recovered from shale mainly by the displacement by brine after the wettability alteration by 3-pentanone.


2021 ◽  
Author(s):  
Eko Awan Yudha Fitnawan ◽  
Wibi Aulia Harsum ◽  
Agus Hasan ◽  
Muhammad Iffan Hannanu ◽  
Steven Leonardus Paulus ◽  
...  

Abstract Indonesia has become a net-oil importer since 2004 as the growing internal demand exceeds Indonesia's oil production. As many fields go into mature phase and combined with other challenges, the national oil production in the last decade has been decreasing from 945 MBOPD to 745 MBOPD with a decline rate of 3-5% per year. Thus, the contribution of the oil and gas sector to the state revenues has also shown a downward trend from 21% in 2010 to only 9.2% in 2019. However,oil production is still strategically importantfor the national economy. It is important for economic value creation, power generation, transportation, and industries as most of the archipelago's infrastructures are still based on fossil energy. If no effort is made to increase production, the country will be fullydependent on crude oil imports, which poses a threat to national energy security. It is thereforeinthe nation's great interest to enhance oil production, minimizing the deficit gapbetween export and import. Several key strategies may be considered to achieve this ambitious target. These strategies can be categorized into the following: 1) People and high performing organization; 2) Exploration, as critical factor for future production; 3) Improved oil recovery (including enhancedoil recovery) technologies, to grow production from the maturing fields; 4) Fast track and simplified project to develop small field discoveries; 5) Strong collaboration between government, industry, academia, and professional associations; and 6)Cost conscious culture. The derivatives of the above-mentioned strategies are among others: standardized resource data management, open source & digitalized geoscience data library, reimbursement system for exploration costs, near field/infrastructure exploration,new play concept, cluster license collaboration, infill wells campaign, multilateral wells, waterflooding, gas injection, stimulation and hydraulic fracturing campaign, well interventions, EOR screening, perfect-well optimization, standardize subsea and/or topside production system, digitalization, and attractive fiscal and regulation that encourages not only the ‘big operator’ to participate in the petroleum sector. The foundation of these strategies should be the legal certainty and effective & proactive bureaucracy. Above all, it is also important to emphasize the common ground of havingearly HSE involvement as part of the solution. In this paper, the authors would like to contribute in sharing the knowledge, technology and perspectives to all petroleum industry professionals in Indonesia based on the authors exposure in the Norwegian petroleum activities. The paper will also review the strategies, short term and long-term opportunities that may inspire Indonesian petroleum authorities and industry in transforming the ambition into action to achieve the national production target of 1 MMBOPD and 12 BCFD gas by 2030.


2021 ◽  
Author(s):  
Hamad AL-Rashidi ◽  
Mahmoud Reda Aly Hussein Hussein ◽  
Abdulaziz Erhamah ◽  
Satinder Malik ◽  
Abdulrahman AL-Hajri ◽  
...  

Abstract Large reserves of High-Viscous Oil in Kuwait calls for Improved Oil Recovery scenarios. In Kuwait unconsolidated sandstone formations, the sandstone intervals represent extensive reservoir intervals of sand separated by laterally extensive non-reservoir intervals that comprise finer-grained, argillaceous sands, silts and muds. The reservoir is shallow with high permeability (above 1000 mD) and under bottom aquifer pressure support. Due to strong viscosity contrast between oil and water, after breakthrough, the water cut rises quickly resulting in strong loss of production efficiency. Mitigating water production is thus mandatory to improve production conditions. The candidate wells have 2 to 3 open intervals in different rock facies with comingle production. The total perforated length is between 38 and 48 ft. Production is through PCP at a rate of around 300 bpd and BS&W is between 71 and 87%. The technology applied utilizes pre-gelled size-controlled product (SMG Microgels) having RPM properties, i.e. inducing a strong drop of relative permeability to water without affecting oil relative permeability. The size is chosen to selectively treat the high-permeability water producing zones while preserving the lower-permeability oil zones. The chemical can also withstand downhole harsh conditions such as salinity of around 170,000ppm and presence of 2% H2S. The treatment consisted of bullhead injection of 300 bbls of pre-gelled chemical through tubing. The first results seem very favourable, sincefor two wells, the water cut has dropped from 80 to 40% with almost same gross production rate. The incremental oil is more than 100 bopd. The third well did not show marked change after WSO treatment. The wells are under continuous monitoring to assess long-term performance. Such result, if confirmed, may lead to high possibilities for the improvement of heavy-oil reservoir production under aquifer support by mitigating water production with simple chemical bullhead injection.


2021 ◽  
Author(s):  
Ahmed Alshmakhy ◽  
Ali Abdelkerim ◽  
Nils Braaten

Abstract This paper will focus on a new system for separation of water in downhole horizontal wells. The advantages with the system are related to the fact that the water produced from the well is not lifted to the surface, but re-injected into suitable parts of the reservoir, either for pressure support or for diposal. The method of water separation and re-injection has been evaluated for oil producing fields. The paper presents details of the technical solutions and analysis done related to the financial analysis/payback. The mechanical design is basically a main pipe section of a few meters of length, with a special geometry utilizing gravity-based separation. A technical and economic analysis of a downhole processing plant (DPP) using a horizontally installed water/oil separator has been performed. The Improved Oil Recovery (IOR)part has been analysed with a relevant flow simulation tool. Based on the given reservoir depth/pressure, flow rate, viscosity/density and water cut, the simulations show that a significant improved production rate/income can be achieved by extracting the produced water downhole and performing re-injection into the producing reservoir to maintain reservoir pressure. In addition, the expected lifetime of the well is increased by several years. The conclusion is that the earlier the separator is installed, the greater the total well income. In addition, details regarding not only multi-lateral wells through level 5 junctions but also production string with separator and valve system has been evaluated and is concluded to be feasible for the well in question The removal of water downhole has several advantages, for example the removal of the water column up to the surface will reduce the reservoir back pressure and will improve recovery /production rates. In addition, not lifting the water will reduce energy consumption/CO2 footprint, and removal of water will reduce surface processing and possible re-injection and chemical treatment cost. In general, water separation downhole is advantageous, due to the higher pressure.


2021 ◽  
Author(s):  
Nadir Husein ◽  
Vishwajit Upadhye ◽  
Igor Leonidovich Novikov ◽  
Albina Viktorovna Drobot ◽  
Viacheslav Valeryevich Bolshakov ◽  
...  

Abstract This paper deals with the case of using the production surveillance inflow tracer based method in one of multi-lateral wells located in the Yuzhno-Priobskoye field. Tracer systems were placed in the well during the well construction by horizontal side tracking, and multi-stage hydraulic fracturing (MSHF) was performed, with the parent borehole remaining in operation. This technology allows developing the reservoir drainage area with a lateral hole and bringing the oil reserves remaining in the parent borehole into production, which results in an increased well productivity and improved oil recovery rate. Tracer systems are placed into the parent borehole within a downhole sub installed into the well completion. Polymer-coated proppant packs were injected during multi-stage hydraulic fracturing to deliver the tracers to the side track lateral. Dynamic production profiling was done to aid into more efficient development of complex and heterogeneous reservoirs and improve of the productive reservoir sweep ratio during the construction of multilateral wells, which enabled us to address several key problems: Providing tools for waterflood diagnostics in multilateral wells and finding an easy water shutoff method for a certain interval Assessing the efficiency of multi-stage hydraulic fracturing and elaborating the optimal treatment design Selecting the optimal mode of the multilateral well operation to prevent premature flooding in one or more laterals Evaluating whether well construction was performed efficiently, and a higher production was achieved by side tracking. Currently, the proposed first-of-its-kind solution enables the operator to obtain a set of data that can help not only significantly improve the wells’ productivity and increase the oil recovery rate, but also lead to a considerable economic savings in capital expenditure.


2021 ◽  
Author(s):  
Taniya Kar ◽  
Abbas Firoozabadi

Abstract Improved oil recovery in carbonate rocks through modified injection brine has been investigated extensively in recent years. Examples include low salinity waterflooding and surfactant injection for the purpose of residual oil reduction. Polymer addition to injection water for improvement of sweep efficiency enjoys field success. The effect of low salinity waterflooding is often marginal and it may even decrease recovery compared to seawater flooding. Polymer and surfactant injection are often effective (except at very high salinities and temperatures) but concentrations in the range of 5000 to 10000 ppm may make the processes expensive. We have recently suggested the idea of ultra-low concentration of surfactants at 100 ppm to decrease residual oil saturation from increased brine-oil interfacial elasticity. In this work, we investigate the synergistic effects of polymer injection for sweep efficiency and the surfactant for interfacial elasticity modification. The combined formulation achieves both sweep efficiency and residual oil reduction. A series of coreflood tests is performed on a carbonate rock using three crude oils and various injection brines: seawater and formation water with added surfactant and polymer. Both the surfactant and polymer are found to improve recovery at breakthrough via increase in oil-brine interfacial elasticity and injection brine viscosification, respectively. The synergy of surfactant and polymer mixed with seawater leads to higher viscosity and higher oil recovery. The overall oil recovery is found to be a strong function of oil-brine interfacial viscoelasticity with and without the surfactant and polymer in sea water and connate water injection.


Sign in / Sign up

Export Citation Format

Share Document