linear transformations
Recently Published Documents


TOTAL DOCUMENTS

1370
(FIVE YEARS 152)

H-INDEX

51
(FIVE YEARS 4)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 148
Author(s):  
Nikita Andriyanov ◽  
Ilshat Khasanshin ◽  
Daniil Utkin ◽  
Timur Gataullin ◽  
Stefan Ignar ◽  
...  

Despite the great possibilities of modern neural network architectures concerning the problems of object detection and recognition, the output of such models is the local (pixel) coordinates of objects bounding boxes in the image and their predicted classes. However, in several practical tasks, it is necessary to obtain more complete information about the object from the image. In particular, for robotic apple picking, it is necessary to clearly understand where and how much to move the grabber. To determine the real position of the apple relative to the source of image registration, it is proposed to use the Intel Real Sense depth camera and aggregate information from its depth and brightness channels. The apples detection is carried out using the YOLOv3 architecture; then, based on the distance to the object and its localization in the image, the relative distances are calculated for all coordinates. In this case, to determine the coordinates of apples, a transition to a symmetric coordinate system takes place by means of simple linear transformations. Estimating the position in a symmetric coordinate system allows estimating not only the magnitude of the shift but also the location of the object relative to the camera. The proposed approach makes it possible to obtain position estimates with high accuracy. The approximate root mean square error is 7–12 mm, depending on the range and axis. As for precision and recall metrics, the first is 100% and the second is 90%.


2021 ◽  
Vol 47 (4) ◽  
pp. 1-32
Author(s):  
David Blackman ◽  
Sebastiano Vigna

F 2 -linear pseudorandom number generators are very popular due to their high speed, to the ease with which generators with a sizable state space can be created, and to their provable theoretical properties. However, they suffer from linear artifacts that show as failures in linearity-related statistical tests such as the binary-rank and the linear-complexity test. In this article, we give two new contributions. First, we introduce two new F 2 -linear transformations that have been handcrafted to have good statistical properties and at the same time to be programmable very efficiently on superscalar processors, or even directly in hardware. Then, we describe some scramblers , that is, nonlinear functions applied to the state array that reduce or delete the linear artifacts, and propose combinations of linear transformations and scramblers that give extremely fast pseudorandom number generators of high quality. A novelty in our approach is that we use ideas from the theory of filtered linear-feedback shift registers to prove some properties of our scramblers, rather than relying purely on heuristics. In the end, we provide simple, extremely fast generators that use a few hundred bits of memory, have provable properties, and pass strong statistical tests.


Author(s):  
Habib Rebei ◽  
Slaheddine Wannes

We introduce the quadratic analogue of the Bogolyubov endomorphisms of the canonical commutation relations (CCR) associated with the re-normalized square of white noise algebra (RSWN-algebra). We focus on the structure of a subclass of these endomorphisms: each of them is uniquely determined by a quadruple [Formula: see text], where [Formula: see text] are linear transformations from a test-function space [Formula: see text] into itself, while [Formula: see text] is anti-linear on [Formula: see text] and [Formula: see text] is real. Precisely, we prove that [Formula: see text] and [Formula: see text] are uniquely determined by two arbitrary complex-valued Borel functions of modulus [Formula: see text] and two maps of [Formula: see text], into itself. Under some additional analytic conditions on [Formula: see text] and [Formula: see text], we discover that we have only two equivalent classes of Bogolyubov endomorphisms, one of them corresponds to the case [Formula: see text] and the other corresponds to the case [Formula: see text]. Finally, we close the paper by building some examples in one and multi-dimensional cases.


Author(s):  
Trinh Quang Kien

In recent years with the explosion of research in artificial intelligence, deep learning models based on convolutional neural networks (CNNs) are one of the promising architectures for practical applications thanks to their reasonably good achievable accuracy. However, CNNs characterized by convolutional layers often have a large number of parameters and computational workload, leading to large energy consumption for training and network inference. The binarized neural network (BNN) model has been recently proposed to overcome that drawback. The BNNs use binary representation for the inputs and weights, which inherently reduces memory requirements and simplifies computations while still maintaining acceptable accuracy. BNN thereby is very suited for the practical realization of Edge-AI application on resource- and energy-constrained devices such as embedded or mobile devices. As CNN and BNN both compose linear transformations layers,  they can be fooled by adversarial attack patterns. This topic has been actively studied recently but most of them are for CNN. In this work, we examine the impact of the adversarial attack on BNNs and propose a solution to improve the accuracy of BNN against this type of attack. Specifically, we use an Enhanced Fast Adversarial Training (EFAT) method to train the network that helps the BNN be more robust against major adversarial attack models with a very short training time. Experimental results with Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD) attack models on our trained BNN network with MNIST dataset increased accuracy from 31.34% and 0.18% to 96.96% and 85.08%, respectively.


2021 ◽  
Vol 24 (4) ◽  
pp. 370-381
Author(s):  
Camillo Cammarota

The random sequence of inter-event times of a level-crossing is a statistical tool that can be used to investigate time series from complex phenomena. Typical features of observed series as the skewed distribution and long range correlations are modeled using non linear transformations applied to Gaussian ARMA processes. We investigate the distribution of the inter-event times of the level-crossing events in ARMA processes in function of the probability corresponding to the level. For Gaussian ARMA processes we establish a representation of this indicator, prove its symmetry and that it is invariant with respect to the application of a non linear monotonic transformation. Using simulated series we provide evidence that the symmetry disappears if a non monotonic transformation is applied to an ARMA process. We estimate this indicator in wind speed time series obtained from three different databases. Data analysis provides evidence that the indicator is non symmetric, suggesting that only highly non linear transformations of ARMA processes can be used in modeling. We discuss the possible use of the inter-event times in the prediction task.


2021 ◽  
Vol 105 (0) ◽  
pp. 35-50
Author(s):  
D. Ferger

We show for a finite sequence of exchangeable random variables that the locations of the maximum and minimum are independent from every symmetric event. In particular they are uniformly distributed on the grid without the diagonal. Moreover, for an infinite sequence we show that the extrema and their locations are asymptotically independent. Here, in contrast to the classical approach we do not use affine-linear transformations. Moreover it is shown how the new transformations can be used in extreme value statistics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fabian Eitel ◽  
Jan Philipp Albrecht ◽  
Martin Weygandt ◽  
Friedemann Paul ◽  
Kerstin Ritter

AbstractConvolutional neural networks (CNNs)—as a type of deep learning—have been specifically designed for highly heterogeneous data, such as natural images. Neuroimaging data, however, is comparably homogeneous due to (1) the uniform structure of the brain and (2) additional efforts to spatially normalize the data to a standard template using linear and non-linear transformations. To harness spatial homogeneity of neuroimaging data, we suggest here a new CNN architecture that combines the idea of hierarchical abstraction in CNNs with a prior on the spatial homogeneity of neuroimaging data. Whereas early layers are trained globally using standard convolutional layers, we introduce patch individual filters (PIF) for higher, more abstract layers. By learning filters in individual latent space patches without sharing weights, PIF layers can learn abstract features faster and specific to regions. We thoroughly evaluated PIF layers for three different tasks and data sets, namely sex classification on UK Biobank data, Alzheimer’s disease detection on ADNI data and multiple sclerosis detection on private hospital data, and compared it with two baseline models, a standard CNN and a patch-based CNN. We obtained two main results: First, CNNs using PIF layers converge consistently faster, measured in run time in seconds and number of iterations than both baseline models. Second, both the standard CNN and the PIF model outperformed the patch-based CNN in terms of balanced accuracy and receiver operating characteristic area under the curve (ROC AUC) with a maximal balanced accuracy (ROC AUC) of 94.21% (99.10%) for the sex classification task (PIF model), and 81.24% and 80.48% (88.89% and 87.35%) respectively for the Alzheimer’s disease and multiple sclerosis detection tasks (standard CNN model). In conclusion, we demonstrated that CNNs using PIF layers result in faster convergence while obtaining the same predictive performance as a standard CNN. To the best of our knowledge, this is the first study that introduces a prior in form of an inductive bias to harness spatial homogeneity of neuroimaging data.


Author(s):  
Victor Makarichev ◽  
Vyacheslav Kharchenko

The special class of atomic functions is considered. The atomic function is a solution with compact support of linear differential functional equation with constant coefficients and linear transformations of the argument. The functions considered are used in discrete atomic compression (DAC) of digital images. The algorithm DAC is lossy and provides better compression than JPEG, which is de facto a standard for compression of digital photos, with the same quality of the result. Application of high precision values of atomic functions can improve the efficiency of DAC, as well as provide the development of new technologies for data processing and analysis. This paper aims to develop a low complexity algorithm for computing precise values of the atomic functions considered. Precise values of atomic functions at the point of dense grids are the subject matter of this paper. Formulas of V. O. Rvachev and their generalizations are used. Direct application of them to the computation of atomic functions on dense grids leads to multiple calculations of a great number of similar expressions that should be reduced. In this research, the reduction required is provided. The goal is to develop an algorithm based on V. O. Rvachev’s formulas and their generalizations. The following tasks are solved: to convert these formulas to reduce the number of arithmetic operations and to develop a verification procedure that can be used to check results. In the current research, methods of atomic function theory and dynamic programming algorithms development principles are applied. A numerical scheme for computation of atomic functions at the points of the grid with the step, which is less than each predetermined positive real number, is obtained and a dynamic algorithm based on it is developed. Also, a verification procedure, which is based on the properties of atomic functions, is introduced. The following results are obtained: 1) the algorithm developed provides faster computation than direct application of the corresponding formulas; 2) the algorithm proposed provides precise computation of atomic functions values; 3) procedure of verification has linear complexity in the number of values to be checked. Moreover, the algorithms proposed are implemented using Python programming language and a set of tables of atomic functions values are obtained. Conclusions: results of this research are expected to improve existing data processing technologies based on atomic functions, especially the algorithm DAC, and accelerate the development of new ones.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Cesar Alejandro Villaseñor Rios ◽  
Octavio Gutiérrez-Frías ◽  
Carlos Aguilar-Ibanez ◽  
Miguel S. Suarez-Castanon

This paper presents a control scheme that allows height position regulation and stabilization for an unmanned planar vertical takeoff and landing aircraft system with an inverted pendular load. The proposed controller consists of nested saturations and a generalized proportional integral (GPI). The GPI controls the aircraft height and the roll attitude; the latter is used as the fictitious input control. Next, the system is reduced through linear transformations, expressing it as an integrator chain with a nonlinear perturbation. Finally, the nested saturation function-based controller stabilizes the aircraft’s horizontal position and the pendulum’s angle. Obtaining the control approach was a challenging task due to the underactuated nature of the aircraft, particularly ensuring the pendulum’s upright position. The stability analysis was based on the second method of Lyapunov using a simple candidate function. The numerical simulation confirmed the control strategy’s effectiveness and performance. Additionally, the numerical simulation included a comparison against a PD controller, where its corresponding performance indexes were estimated, revealing that our controller had a better response in the presence of unknown disturbances.


Sign in / Sign up

Export Citation Format

Share Document