physiological control
Recently Published Documents


TOTAL DOCUMENTS

497
(FIVE YEARS 64)

H-INDEX

51
(FIVE YEARS 6)

2022 ◽  
Vol 12 ◽  
Author(s):  
Eiseul Kim ◽  
Seung-Min Yang ◽  
Dayoung Kim ◽  
Hae-Yeong Kim

Lacticaseibacillus casei, Lacticaseibacillus chiayiensis, and Lacticaseibacillus zeae are very closely related Lacticaseibacillus species. L. casei has long been proposed as a probiotic, whereas studies on functional characterization for L. chiayiensis and L. zeae are some compared to L. casei. In this study, L. casei FBL6, L. chiayiensis FBL7, and L. zeae FBL8 were isolated from raw milk, and their probiotic properties were investigated. Genomic analysis demonstrated the role of L. chiayiensis and L. zeae as probiotic candidates. The three strains were tolerant to acid and bile salt, with inhibitory action against pathogenic bacterial strains and capacity of antioxidants. Complete genome sequences of the three strains were analyzed to highlight the probiotic properties at the genetic level, which results in the discovery of genes corresponding to phenotypic characterization. Moreover, genes known to confer probiotic characteristics were identified, including genes related to biosynthesis, defense machinery, adhesion, and stress adaptation. The comparative genomic analysis with other available genomes revealed 256, 214, and 32 unique genes for FBL6, FBL7, and FBL8, respectively. These genomes contained individual genes encoding proteins that are putatively involved in carbohydrate transport and metabolism, prokaryotic immune system for antiviral defense, and physiological control processes. In particular, L. casei FBL6 had a bacteriocin gene cluster that was not present in other genomes of L. casei, resulting in this strain may exhibit a wide range of antimicrobial activity compared to other L. casei strains. Our data can help us understand the probiotic functionalities of the three strains and suggest that L. chiayiensis and L. zeae species, which are closely related to L. casei, can also be considered as novel potential probiotic candidate strains.


Author(s):  
Hiam Kamel Fadil, Kholoud Mostafa Sheikh Yousef Hiam Kamel Fadil, Kholoud Mostafa Sheikh Yousef

This study aimed to investigate the effect of the alcoholic extract of garlic and ginger together on the levels of glucose, peptide -c and body weight in diabetic white mice. The study included 40 male white mice, Balb/c strain, which were divided into four experimental groups (10 mice in each group). The first group was a physiological control that was injected with physiological saline (0.9%) until the end of the experiment. As for the second group, diabetes was induced with a dose of 200 mg/kg of Alloxan hydrate weight of the mouse only, while the third group developed diabetes, and then it was treated with alcoholic extract of garlic and ginger together at a dose of 500 mg/kg of mouse weight for 10 days. While the fourth group developed diabetes and was treated with Glibenclamide. At the end of the experiment, the animals were anesthetized and blood was drawn from them by cardiocentesis. The results showed the effectiveness of garlic and ginger extracts in reducing blood glucose concentration by 35.75% and returning Peptide-c levels to their normal levels, equivalent to Glibenclamide (glyburide), which is known as an oral hypoglycemic agent.


2021 ◽  
Author(s):  
Alexane Tournier ◽  
Michael Beacom ◽  
Jenny A. Westgate ◽  
Laura Bennet ◽  
Charles Garabedian ◽  
...  

Oceans ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 822-842
Author(s):  
Laurent Duchatelet ◽  
Julien M. Claes ◽  
Jérôme Delroisse ◽  
Patrick Flammang ◽  
Jérôme Mallefet

This review presents a synthesis of shark bioluminescence knowledge. Up to date, bioluminescent sharks are found only in Squaliformes, and specifically in Etmopteridae, Dalatiidae and Somniosidae families. The state-of-the-art knowledge about the evolution, ecological functions, histological structure, the associated squamation and physiological control of the photogenic organs of these elusive deep-sea sharks is presented. Special focus is given to their unique and singular hormonal luminescence control mechanism. In this context, the implication of the photophore-associated extraocular photoreception—which complements the visual adaptations of bioluminescent sharks to perceive residual downwelling light and luminescence in dim light environment—in the hormonally based luminescence control is depicted in detail. Similarities and differences between shark families are highlighted and support the hypothesis of an evolutionary unique ancestral appearance of luminescence in elasmobranchs. Finally, potential areas for future research on shark luminescence are presented.


Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 837
Author(s):  
Rafael Pineda ◽  
Encarnacion Torres ◽  
Manuel Tena-Sempere

Body energy and metabolic homeostasis are exquisitely controlled by multiple, often overlapping regulatory mechanisms, which permit the tight adjustment between fuel reserves, internal needs, and environmental (e.g., nutritional) conditions. As such, this function is sensitive to and closely connected with other relevant bodily systems, including reproduction and gonadal function. The aim of this mini-review article is to summarize the most salient experimental data supporting a role of the amygdala as a key brain region for emotional learning and behavior, including reward processing, in the physiological control of feeding and energy balance. In particular, a major focus will be placed on the putative interplay between reproductive signals and amygdala pathways, as it pertains to the control of metabolism, as complementary, extrahypothalamic circuit for the integral control of energy balance and gonadal function.


2021 ◽  
Author(s):  
John Edward Fleming ◽  
Vaclav Kremen ◽  
Roee Gilron ◽  
Nicholas M. Gregg ◽  
Derk-Jan Dijk ◽  
...  

Biological rhythms permeate all living organisms at a variety of timescales. These rhythms are fundamental to physiological homeostasis, and their disruption is thought to play a key role in the initiation, progression, and expression of disease. In the last two decades, neuromodulation has been established as an effective adjunct therapy for medically refractory neurological disorders. To date, however, due to the limited sensing and algorithm capabilities of neuromodulation devices, exploring the influence of biological rhythms on therapy efficacy has not been feasible. However, with the development of new bioelectronic devices capable of long-term data recording and adaptive stimulation parameter adjustments, clinical neuroscience researchers are now gaining unprecedented insight into patient physiology across a variety of neurological diseases, including longitudinal rhythmic behavior. In this perspective, we propose that future bioelectronic devices should integrate chronobiological considerations in their physiological control structure to maximize the benefits of therapy. We specifically highlight this need for deep brain stimulation (DBS) chronotherapy, where the DBS therapeutic dosage would be titrated based on the time-of-day and synchronized to each patient’s individual chronotype/sleep-wake cycle. This is motivated by preliminary longitudinal data recorded from both patients with Parkinson’s disease (PD) and epilepsy, which show periodic symptom biomarkers synchronized to sub-daily (ultradian), daily (circadian), and longer time scale (infradian) rhythms. In addition, considering side effects, tonic stimulation can undermine diurnal patterns and cause fragmentation of sleep-wake rhythms. Based on these observations, we suggest a control structure for future bioelectronic devices which incorporates anticipatory, time-based adaptation of stimulation control, locked to patient-specific biological rhythms, as an adjunct to classical feedforward and feedback control methods. Initial results from three case studies using chronotherapy-enabled prototypes will illustrate the concept. The proposed control architecture for a future bioelectronic implant mimics more closely the classical integration of adaptive, feedforward, and feedback control methods found in physiology, and could be useful as a general method for personalized therapy refinement.


Medicina ◽  
2021 ◽  
Vol 57 (11) ◽  
pp. 1272
Author(s):  
Gianfranco Natale ◽  
Michael E. J. Stouthandel ◽  
Tom Van Hoof ◽  
Guido Bocci

Breast cancer is one of the most important causes of premature mortality among women and it is one of the most frequently diagnosed tumours worldwide. For this reason, routine screening for prevention and early diagnosis is important for the quality of life of patients. Breast cancer cells can enter blood and lymphatic capillaries, then metastasizing to the regional lymph nodes in the axilla and to both visceral and non-visceral sites. Rather than at the primary site, they seem to enter the systemic circulation mainly through the sentinel lymph node and the biopsy of this indicator can influence the axillary dissection during the surgical approach to the pathology. Furthermore, secondary lymphoedema is another important issue for women following breast cancer surgical treatment or radiotherapy. Considering these fundamental aspects, the present article aims to describe new methodological approaches to assess the anatomy of the lymphatic network in the axillary region, as well as the molecular and physiological control of lymphatic vessel function, in order to understand how the lymphatic system contributes to breast cancer disease. Due to their clinical implications, the understanding of the molecular mechanisms governing lymph node metastasis in breast cancer are also examined. Beyond the investigation of breast lymphatic networks and lymphatic molecular mechanisms, the discovery of new effective anti-lymphangiogenic drugs for future clinical settings appears essential to support any future development in the treatment of breast cancer.


2021 ◽  
Author(s):  
Abele Michela ◽  
Jacobien van Peer ◽  
Jan C. Brammer ◽  
Anique Nies ◽  
Marieke van Rooij ◽  
...  

It is widely recognized that police performance may be hindered by psychophysiological state changes during acute stress. To address the need for awareness and control of these physiological changes, police academies in many countries have implemented Heart-Rate Variability (HRV) biofeedback training. Despite these trainings now being widely delivered in classroom setups, they typically lack the arousing action context needed for successful transfer to the operational field, where officers must apply learned skills, particularly when stress levels rise. The study presented here aimed to address this gap by training physiological control skills in an arousing action context. We developed a Virtual-Reality (VR) breathing-based biofeedback training in which police officers perform deep and slow diaphragmatic breathing in an engaging game-like action context. This VR game consisted of a selective shoot/don’t shoot game designed to assess response inhibition, an impaired capacity in high arousal situations. Biofeedback was provided based on adherence to a slow breathing pace: the slower and deeper the breathing, the less constrained peripheral vision became, facilitating accurate responses to the in-game demands. A total of nine male police trainers completed 10 sessions over a 4-week period as part of a single-case experimental ABAB study-design (i.e., alternating sessions with and without biofeedback). Results showed that eight out of nine participants showed improved breathing control in action, with a positive effect on breathing-induced low frequency HRV, while also improving their in-game behavioral performance. Critically, the breathing-based skill learning transferred to subsequent sessions in which biofeedback was not presented. Importantly, all participants remained highly engaged throughout the training. Altogether, our study showed that our VR environment can be used to train breathing regulation in an arousing action context.


Sign in / Sign up

Export Citation Format

Share Document